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Table 1: Performance. Ad: Advection time, Dt: Decimation

time, Dtimes: Decimation times per 1000 frames, Rt: Ren-

dering time.

Data set Ad (ms) Dt Dtimes Rt (ms)
Lorenz 18.03 825 (ms) 18.75 6.72
Rssler 33.94 n/a 0 18.43

Duffing 84.49 6.58(min) 1 28.75
Van der Pol 36.90 n/a 0 16.56

Figure 11: Two examples of using the polygon visualiza-

tion method on normal turbulent flow fields. Left: the Solar

Plume data set. Right: the Super Nova data set.

change of the 2-D attractor. Our attraction force approach
successfully renders the close sheets without intersection.

Figure 11 gives two examples of using the same technique
on turbulent physical flow fields. Colors are used to indi-
cate the local speed. Our adaptive triangulation successfully
tracks the complicated shapes created by the turbulence.

6. Conclusion

The contribution of this paper is a polygonal surface advec-
tion method to visualize flow fields with an efficient GPU
implementation. The algorithm is an adaptive subdivision
process alternating with a polygon decimation method ac-
counting for nearby layers. We have tested it mainly on the
strange attractors and achieved interactive or even real time
performance. However we hope that this method will be
generic and useful for many other flow field data sets. The
attractor data sets are very extreme cases, in that they stretch
the surface severely and form sharp creases and nearby par-
allel sheets. Therefore we believe that the issues we have
solved for the strange attractors will help us to expand this
polygonal surface advection method to other data sets. As
a future research focus, we will also investigate automatic
seeding methods for our polygon surface advection, so that
a proper starting surface can be posed to reveal important
features of the flow field.
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ABSTRACT
Recent advances in computing have led to an explosion in the amount
of data being generated. Processing the ever-growing data in a
timely manner has made throughput computing an important as-
pect for emerging applications. Our analysis of a set of important
throughput computing kernels shows that there is an ample amount
of parallelism in these kernels which makes them suitable for to-
day’s multi-core CPUs and GPUs. In the past few years there have
been many studies claiming GPUs deliver substantial speedups (be-
tween 10X and 1000X) over multi-core CPUs on these kernels. To
understand where such large performance difference comes from,
we perform a rigorous performance analysis and find that after ap-
plying optimizations appropriate for both CPUs and GPUs the per-
formance gap between an Nvidia GTX280 processor and the Intel
Core i7 960 processor narrows to only 2.5x on average. In this pa-
per, we discuss optimization techniques for both CPU and GPU,
analyze what architecture features contributed to performance dif-
ferences between the two architectures, and recommend a set of
architectural features which provide significant improvement in ar-
chitectural efficiency for throughput kernels.

Categories and Subject Descriptors
C.1.4 [Processor Architecture]: Parallel architectures
; C.4 [Performance of Systems]: Design studies
; D.3.4 [Software]: Processors—Optimization

General Terms
Design, Measurement, Performance

Keywords
CPU architecture, GPU architecture, Performance analysis, Perfor-
mance measurement, Software optimization, Throughput Comput-
ing

1. INTRODUCTION
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The past decade has seen a huge increase in digital content as
more documents are being created in digital form than ever be-
fore. Moreover, the web has become the medium of choice for
storing and delivering information such as stock market data, per-
sonal records, and news. Soon, the amount of digital data will ex-
ceed exabytes (1018) [31]. The massive amount of data makes stor-
ing, cataloging, processing, and retrieving information challenging.
A new class of applications has emerged across different domains
such as database, games, video, and finance that can process this
huge amount of data to distill and deliver appropriate content to
users. A distinguishing feature of these applications is that they
have plenty of data level parallelism and the data can be processed
independently and in any order on different processing elements
for a similar set of operations such as filtering, aggregating, rank-
ing, etc. This feature together with a processing deadline defines
throughput computing applications. Going forward, as digital data
continues to grow rapidly, throughput computing applications are
essential in delivering appropriate content to users in a reasonable
duration of time.
Twomajor computing platforms are deemed suitable for this new

class of applications. The first one is the general-purpose CPU
(central processing unit) that is capable of running many types of
applications and has recently provided multiple cores to process
data in parallel. The second one is the GPU (graphics process-
ing unit) that is designed for graphics processing with many small
processing elements. The massive processing capability of GPU
allures some programmers to start exploring general purpose com-
puting with GPU. This gives rise to the GPGPU field [3, 33].
Fundamentally, CPUs and GPUs are built based on very different

philosophies. CPUs are designed for a wide variety of applications
and to provide fast response times to a single task. Architectural
advances such as branch prediction, out-of-order execution, and
super-scalar (in addition to frequency scaling) have been responsi-
ble for performance improvement. However, these advances come
at the price of increasing complexity/area and power consumption.
As a result, main stream CPUs today can pack only a small number
of processing cores on the same die to stay within the power and
thermal envelopes. GPUs on the other hand are built specifically
for rendering and other graphics applications that have a large de-
gree of data parallelism (each pixel on the screen can be processed
independently). Graphics applications are also latency tolerant (the
processing of each pixel can be delayed as long as frames are pro-
cessed at interactive rates). As a result, GPUs can trade off single-
thread performance for increased parallel processing. For instance,
GPUs can switch from processing one pixel to another when long

• Also see Vuduc et al., “On the Limits of GPU Acceleration”, 
HotPar 2010 (June 2010) [and yesterday afternoon]



Top-Level Results

Num. Frequency Num. BW SP SIMD DP SIMD Peak SP Scalar Peak SP SIMD Peak DP SIMD
PE (GHz) Transistors (GB/sec) width width FLOPS (GFLOPS) Flops (GFLOPS) Flops (GFLOPS)

Core i7-960 4 3.2 0.7B 32 4 2 25.6 102.4 51.2
GTX280 30 1.3 1.4B 141 8 1 116.6 311.1/933.1 77.8

Table 2: Core i7 andGTX280 specifications. BW: local DRAM bandwidth, SP: Single-Precision Floating Point, DP: Double-Precision
Floating Point.

of the local shared buffer is just 16KB, and much smaller than the
cache sizes on CPUs.
Bandwidth Difference: Core i7 provides a peak external mem-
ory bandwidth of 32 GB/sec, while GTX280 provides a bandwidth
of around 141 GB/sec. Although the ratio of peak bandwidth is
pretty large (∼4.7X), the ratio of bytes per flop is comparatively
smaller (∼1.6X) for applications not utilizing fused multiply add
in the SFU.
Other Differences: CPUs provide for fast synchronization op-
erations, something that is not efficiently implemented on GPUs.
CPUs also provide for efficient in-register cross-lane SIMD oper-
ations, like general shuffle and swizzle instructions. On the other
hand, such operations are emulated on GPUs by storing the data
into the shared buffer, and loading it with the appropriate shuffle
pattern. This incurs large overheads for some throughput comput-
ing applications. In contrast, GPUs provide support for gather/s-
catter instructions from memory, something that is not efficiently
implemented on CPUs. Gather/Scatter operations are important
to increase SIMD utilization for applications requiring access to
non-contiguous regions of memory to be operated upon in a SIMD
fashion. Furthermore, the availability of special function units like
texture sampling unit and math units for fast transcendental helps
speedup throughput computing applications that spend a substan-
tial amount of time in these operations.

4. PERFORMANCE EVALUATIONS ON
CORE I7 AND GTX280

This section evaluates the performance of the throughput com-
puting kernels on the Core i7-960 and GTX280 processors and an-
alyzes the measured results.

4.1 Methodology
We measured the performance of our kernels on (1) a 3.2GHz

Core i7-960 processor running the SUSE Enterprise Server 11 op-
erating system with 6GB of PC1333 DDR3 memory on an Intel
DX58SO motherboard, and (2) a 1.3GHz GTX280 processor (an
eVGA GeForce GTX280 card with 1GB GDDR3 memory) in the
same Core i7 system with Nvidia driver version 19.180 and the
CUDA 2.3 toolkit.
Since we are interested in comparing the CPU and the GPU ar-

chitectures at the chip level to see if any specific architecture fea-
tures are responsible for the performance difference, we did not in-
clude the data transfer time for GPUmeasurements. We assume the
throughput computing kernels are executed in the middle of other
computations that create data in GPUmemory before the kernel ex-
ecution and use data generated by the kernel in GPU memory. For
applications that do not meet our assumption, transfer time can sig-
nificantly degrade performance as reported by Datta in [16]. The
GPU results as presented here are an upper bound of what will be
seen in actual applications for these algorithms.
For both CPU and GPU performance measurements, we have

optimized most of the kernels individually for each platform. For
some of the kernels, we have used the best available implemen-
tation that already existed. Specifically, evaluations of SGEMM,
SpMV, FFT andMC on GTX280 have been done using code from

Figure 1: Comparison between Core i7 and GTX280 Perfor-
mance.

[1, 8, 2, 34], respectively. For the evaluations of SGEMM, SpMV
and FFT on Core i7, we used Intel MKL 10.0. Table 3 shows
the performance of throughput computing kernels on Core i7 and
GTX280 processor with the appropriate performance metric shown
in the caption. To the best of our knowledge, our performance num-
bers are at least on par and often better than the best published
data. We typically find that the highest performance is achieved
when multiple threads are used per core. For Core i7, the best per-
formance comes from running 8 threads on 4 cores. For GTX280,
while the maximum number of warps that can be executed on one
GPU SM is 32, a judicious choice is required to balance the ben-
efit of multithreading with the increased pressure on registers and
on-chip memory resources. Kernels are often run with 4 to 8 warps
per core for best GPU performance.

4.2 Performance Comparison
Figure 1 shows the relative performance between GTX280 and

Core i7 processors when data transfer time for GTX280 is not con-
sidered. Our data shows that GTX280 only has an average of 2.5X
performance advantage over Core i7 in the 14 kernels tested. Only
GJK achieves a greater than 10X performance gap due to the use of
the texture sampler. Sort and Solv actually perform better on Core
i7 . Our results are far less than previous claims like the 50X dif-
ference in pricing European options using Monte Carlo method [9],
the 114X difference in LBM [45], the 40X difference in FFT [21],
the 50X difference in sparse matrix vector multiplication [47] and
the 40X difference in histogram computation [53], etc.
There are many factors that contributed to the big difference be-

tween previous reported results and ours. One factor is what CPU
and GPU are used in the comparison. Comparing a high perfor-
mance GPU to a mobile CPU is not an optimal comparison as their
considerations for operating power, thermal envelop and reliability
are totally different. Another factor is how much optimization is
performed on the CPU and GPU. Many studies compare optimized
GPU code to unoptimized CPU code and resulted in large differ-
ence. Other studies which perform careful optimizations to CPU
and GPU such as [27, 39, 40, 43, 49] report much lower speedup
similar to ours. Section 5.1 discusses the necessary software opti-
mizations for improving performance for both CPU and GPU plat-
forms.
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Dense Matrix Multiply

• Benchmarking GPUs to Tune Dense Linear Algebra by Vasily Volkov and James W. 
Demmel, Supercomputing 2008
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Tuned SpMV

• Richard Vuduc, Aparna Chandramowlishwaran, Jee Choi, Murat (Efe) Guney, and 
Aashay Shringarpure. On the Limits of GPU Acceleration, HotPar ’10 (June 2010).
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Figure 1: The best GPU implementation of sparse matrix-vector multiply (SpMV) (“Our code”, on one NVIDIA GTX
285) can be over 2× faster than a highly-tuned multicore CPU implementation (“Tuned Nehalem”, on a dual-socket
quad-core system). Implementations: ParCo’09 [16], SC’09 [2], and PPoPP’10 [5]. Note: Figure taken from an
upcoming book chapter [15].

will only observe a speedup if the CPU time, τcpu, ex-
ceeds the GPU time, τgpu. With this constraint, we can
determine how many iterations q are necessary for the
GPU-based solver to beat the CPU-based one:

τcpu ≥ τgpu (1)

⇒ k · q
βcpu

≥ k ·
�

1

βreorg
+

1

βtransfer
+

q

βgpu

�
(2)

⇒ q ≥
1

βreorg + 1
βtransfer

1
βcpu − 1

βgpu
(3)

From Figure 1, we might optimistically take βgpu= (4
bytes/flop) * (19 Gflop/s) = 76 GB/s, and pessimistically
take βcpu= (4 bytes per flop) * 6 Gflop/s = 24 GB/s; both
are about half the aggregate peak on the respective plat-
forms. Reasonable estimates of βreorg and βtransfer, based
on measurement (not peak), are 0.5 and 1 GB/s, respec-
tively. The solver must, therefore, perform q ≈ 105
iterations to break-even; thus, to realize an actual 2×
speedup on the whole solve, we would need q ≈ 840 it-
erations. While typical iteration counts reported for stan-
dard problems number in the few hundreds [6], whether
this value of q is large or not is highly problem- and
solver-dependent, and we might not know until run-time
when the problem (matrix) is known. The developer
must make an educated guess and take a chance, rais-
ing the question of what she or he should expect the real
pay-off from GPU acceleration to be.

Having said that, our analysis may also be pessimistic.
One could, for instance, improve effective βtransfer term
by pipelining the matrix transfer with the SpMV. Or, one

might be able to eliminate the βtransfer term altogether by
assembling the matrix on the GPU itself [3]. The main
point is that making use of GPU acceleration even in this
relatively simple “application” is more complicated than
it might at first seem.

3 Direct Sparse Solvers

Another important related class of sparse matrix solvers
are direct methods based on explicitly factoring the ma-
trix. In contrast to an iterative solver, a direct solver has
a fixed number of operations as well as more complex
task-level parallelism, more storage, and possibly even
more irregular memory access behavior than the largely
data-parallel and streaming behavior of the iterative case
(Section 2).

We have been interested in such sparse direct solvers,
particularly so-called multifrontal methods for Cholesky
factorization, which we tune specifically for structural
analysis problems arising in civil engineering [9]. From
the perspective of GPU acceleration, the most rele-
vant aspect of this class of sparse direct solvers is that
the workload consists of many dense matrix subprob-
lems (factorization, triangular multiple-vector solves,
and rank-k update matrix multiplications). Generally
speaking, we expect a GPU to easily accelerate such sub-
computations.

In reality, however, the size of these subproblems
changes as the computation proceeds, and the subprob-
lems themselves may execute asynchronously together,
depending on the input problem. That is, the input

3
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FIGURE 1.7: A performance comparison for all architectures at maximum
concurrency after full tuning. The left graph shows auto-tuned 7-point stencil
performance, while the right graph displays performance for the auto-tuned
27-point stencil with and without common subexpression elimination.
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FIGURE 1.8: A power efficiency comparison for all architectures at maxi-
mum concurrency after full tuning. The left graph shows auto-tuned 7-point
stencil power efficiency, while the right graph displays power efficiency for the
auto-tuned 27-point stencil with and without common subexpression elimina-
tion.

GStencil/s/kW. This is essentially the number of stencil operations one can
perform per Joule of energy.

Although manufactured by different companies, the evolution of x86 multi-
core chips from the Intel Clovertown, through the AMD Barcelona, and finally
to the Intel Nehalem is an intriguing one. The Clovertown is a UMA architec-
ture that uses an older front-side bus architecture and supports only a single
hardware thread per core. In terms of DRAM, it employs FBDIMMs running

• “Auto-tuning Stencil Computations on Multicore and Accelerators” by Kaushik Datta, 
Samuel Williams, Vasily Volkov, Jonathan Carter, Leonid Oliker, John Shalf, and Katherine 
Yelick. To appear in Scientific Computing with Multicore and Accelerators, January 2011.



N-Body

• Fast N-Body Simulation with CUDA by Lars Nyland, Mark Harris, and Jan Prins, 
GPU Gems 3, 2007.

678

algorithms of this form include the Barnes-Hut method (BH) (Barnes and Hut 1986),
the fast multipole method (FMM) (Greengard 1987), and the particle-mesh methods
(Hockney and Eastwood 1981, Darden et al. 1993). 

The all-pairs component of the algorithms just mentioned requires substantial time to
compute and is therefore an interesting target for acceleration. Improving the perform-
ance of the all-pairs component will also improve the performance of the far-field com-
ponent as well, because the balance between far-field and near-field (all-pairs) can be
shifted to assign more work to a faster all-pairs component. Accelerating one compo-
nent will offload work from the other components, so the entire application benefits
from accelerating one kernel.

Chapter 31  Fast N-Body Simulation with CUDA

Figure 31-1. Frames from an Interactive 3D Rendering of a 16,384-Body System Simulated by Our
Application
We compute more than 10 billion gravitational forces per second on an NVIDIA GeForce 8800 GTX
GPU, which is more than 50 times the performance of a highly tuned CPU implementation.

531_gems3_ch31 7/4/2007 9:09 PM Page 678 FINAL

GPU:  Approaches 
theoretical compute peak, 
uses fast square-root and 
reciprocal hw.  >10B 
gravitational forces/s, 
200+ GFLOPS. (Nyland et 
al., 2007)

CPU: SSE implementation 
achieves 3.8 GFLOPS 
(Elsen et al., 2006)
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Lagrangian Visualization & Analysis of Fluid Flow 

• Example: 
Finite-Time Lyapunov Exponents

• Measures exponential separation rate between 
neighboring particles

• Visualizes forward time and backward time 
exponents with Volume Rendering

• Formation of turbulent structures can be 
observed directly

• Jet flow: 
256×1282, 735 timesteps, ~3.1B particles

• Time to movie: 
CPU ~60min (compute bound), 
GPU ~4min (I/O bound) 

[courtesy Christoph Garth, UC Davis]



Lagrangian Visualization & Analysis of Fluid Flow 

• Example: 
Finite-Time Lyapunov Exponents

• Measures exponential separation rate between 
neighboring particles

• Visualizes forward time and backward time 
exponents with Volume Rendering

• Formation of turbulent structures can be 
observed directly

• Jet flow: 
256×1282, 735 timesteps, ~3.1B particles

• Time to movie: 
CPU ~60min (compute bound), 
GPU ~4min (I/O bound) 

[courtesy Christoph Garth, UC Davis]



GPU Volume Rendering
• Use MapReduce parallel programming 

model

• Lessons:

• Too few nodes: too much work per node

• Sweet spot for us: 8 nodes, 10243

• Too many nodes: too much communication

• Can (easily) afford more computation per ray

• Disk I/O would dominate runtime

duce) is another MapReduce package, and potentially the

first to use data streams instead of hard disk access. In-

stead of sending intermediate data values and reduction re-

sults to disk, they are streamed directly to new mapper and

reducer nodes for further processing. This allows for an

efficient, iterative MapReduce algorithm with many consec-

utive MapReduce processes.

Recent efforts have gone towards porting MapReduce to

commodity parallel- processing resources such as GPUs and

IBM’s Cell. Catanzaro et al. created a MapReduce library

for GPUs [2], though the primary focus of his work was

performing many small-scale MapReduce tasks. The main

contribution of their work was finding an efficient way to

sort small mapping outputs on the GPU. Mars [9] was the

first large-scale, GPU- based MapReduce system. It works

with a single GPU on a single node, but only on in-core

datasets. CellMR [24] is a single-node implementation of

MapReduce on the Cell Engine that alleviates the in-core

dilemma of Mars. CellMR accomplishes this by streaming

map data on to the compute devices in small pieces and

performing partial reductions on resident data. The problem

with CellMR is that it relies on these partial reductions to

eliminate as much I/O as possible. Given the formulation

of our volume renderer, we would rarely see any benefits.

3. IMPLEMENTATION

Parallel volume rendering, particularly ray casting against

bricked input with partial-ray compositing, has unique and

well-defined computation and memory-, disk-, and network-

access characteristics. We argue that these characteristics

make volume rendering well suited for parallel rendering on

a cluster of GPUs.

The two primary steps in parallel volume rendering are

partial ray casting against bricks of the volume, and com-

positing a sets of previously unsorted ray fragments into

final pixels. Both of these tasks are embarrassingly parallel;

however, communication is required to progress from one to

the other.

Using a cluster of GPUs to execute each of these steps re-

sults in a performance increase, even though the cost of com-

munication increases slightly. Loading even a small brick

from disk can take a substantial amount of time; loading

a 64
3

block from disk takes approximately 20 ms on our

cluster. Transfering that brick to the GPU takes less than

0.2 ms (less than 1% overhead) and we achieve a very sig-

nificant decrease in ray-casting time. This is because the

VRAM of modern GPUs is more than 10X faster than that

of modern CPU DRAM, and the GPU has eight texture-

fetch units and eight texture-filtering units. Transmitting

final ray fragments from the GPU to the CPU also requires

very little time (empirically found to be less than 2 ms).

For a given image of X pixels with Y nodes and B bricks,

the lower bound on generated ray fragments is O(X) and a

loose upper bound is O(BX). Of course, the actual num-

ber is affected by the volume itself (ray fragments with no

contributions are discarded) and the view (the more view-

dependent overlap between bricks, the more potential for a

higher number of ray fragments). Given the worst-case sce-

nario, each of the Y nodes must make Y −1 communication

requests of size sizeof (Ray Fragment) × O(
BX
Y ). A GPU-to-

CPU transfer of the finished ray fragments must first com-

plete before network I/O can commence. Just as was the

case with loading the volume data, the network transmission

time is several orders of magnitude higher than the GPU-to-

CPU transfer time of those ray fragments. And of course,

just as a CPU-based volume renderer can overlap sending of

ray fragments with computing more ray fragments, so can a

GPU-based renderer.

Thus, with a marginal increase or even a possible decrease

of disk, network, and memory access through all stages of

the volume-rendering pipeline, we believe that a distributed

multi-GPU scheme is well-suited to the parallel volume- ren-

dering workflow. We proceed to describe our implemen-

tations of a parallel volume renderer and the multi-GPU

MapReduce library that serves as its substrate.

3.1 MapReduce Implementation

Our implementation of MapReduce was written in C++

and CUDA [22, 21, 15] to take advantage of NVIDIA GPUs.

The implementation was written to be easy-to-use and ex-

tensible; all user-required tasks are represented via objects

with virtual functions used as callbacks.

There are four main stages to the MapReduce workflow:

Map, Partition, Sort, and Reduce (we specifically omitted

partial reduce/combine because it didn’t increase perfor-

mance for our volume renderer). Each of these stages are

available for user customization by inheriting and extending

from virtual classes. Figure 1 shows a visual diagram of our

system.

BrickBrickBrick
BrickBrickBrick

BrickBrickBrick

Mapper Mapper Mapper

Partition Partition Partition

Sort Sort Sort

Reduce Reduce Reduce

Fragments Fragments Fragments

…

…

…

…

…

Figure 1: The MapReduce workflow: Bricks are in-
dividually streamed to the GPU Mapper. The out-
put from each kernel execution is a set of ray frag-
ments that are sent to the Partition phase. As rays
are partitioned, they are sent to the appropriate pro-
cess for the Sort phase, and then finally are sent to
a Reducer.

3.1.1 Restrictions
In an effort to make the library as efficient as possible, we

made a number of optimizations and design decisions that

are specific to volume rendering, but would not necessarily

work well for every MapReduce task.

Figure 2: The Skull, Supernova, and Plume datasets.

Figure 3: The relative cost of compute-to-communication can be seen from these graphs. The total time
taken to ray cast (a portion of the Map phases) scales linearly with the number of GPUs. The not-quite
linear decrease, or in some cases increase, as the number of GPUs increase is due to the extra communication
required. As more GPUs are added, more ray fragments generated, and thus more time is required for reduce
and more time is required for communication. With volumes of this size, the best runtime configuration is
8 GPUs, primarily because it strikes a good balance between splitting work and minimizing communication.
With less than 8 GPUs, there is too much work, with more than 8 GPUs, there is too much communication.
The 10243 volume shows a certain trend: the additional communication with 32 GPUs over 16 GPUs is
outweighed by the saving in compute time. With sufficiently large volumes, we believe that performance
increases should be seen beyond eight GPUs.

Multi-GPU Volume Rendering using MapReduce by Jeff A. Stuart, Cheng-Kai Chen, Kwan-Liu Ma, John D. 
Owens. MapReduce ’10, June 2010.



GPU Volume Rendering

• Highest scalability of GPU-
based volume renderers

• k-d trees for dynamic load-
balancing

• ~2 frames/second for 20483 
volumes

• Integrated into VisIt

Large Data Visualization on Distributed Memory Multi-GPU Clusters by Thomas Fogal, Hank Childs, Siddharth 
Shankar, Jens Krüger, R. Daniel Bergeron and Philip Hatcher. High Performance Graphics ’10, June 2010.



Goal: Sparse Volume Rendering
• Challenge: Real-time 

rendering of data that is 
sparse in the analysis space

• Production vis packages 
don’t offer scalable multi-
GPU sparse volume 
renderers

• Integrate with query-driven 
visualization, image 
compositing, parallel I/O

• Ultravis lead: Jian Huang, 
Tennessee

Figure from Terascale Supernova 
Initiative, courtesy Jian Huang



Goal: Adaptive Volume Rendering

• Goal: Visualize volumes with varying resolution

• Challenges: Sampling at boundaries, load distribution

Figure courtesy Thomas Fogel
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Fast & Flexible Communication

http://www.watch.impress.co.jp/game/docs/20060329/3dps303.jpg

• CPUs are good at creating & manipulating data structures?

• GPUs are good at accessing & updating data structures?

http://www.watch.impress.co.jp/game/docs/20060329/3dps303.jpg
http://www.watch.impress.co.jp/game/docs/20060329/3dps303.jpg
http://www.watch.impress.co.jp/game/docs/20060329/3dps303.jpg
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Structuring Multi-GPU Programs
CPU

GPU

Want to run on GPU:
if (foo == true) {
  GPU[x][bar] = baz;
} else {
  bar = GPU[y][baz];
}

GPUGPUGPUGPU

Static division of work
(Global Arrays: Zippy, 

CUDASA)

Instead, GPU as slave.
Goal: GPU as first-class citizen.



Making Development Easier

• Better tools

• Higher-level / domain-specific languages

• Robust self-tuning

• Benchmarks



Porting Existing Codes
• Static analysis

• Hotspot identification and transformation

• Profiling

• Code transformations

• Portable self-tuning

• Dynamic techniques

• Scheduling

• Load-balancing

• Memory management



GPU Computing Challenges

• Addressing other dwarfs

• Sparseness & adaptivity

• Scalability: Multi-GPU algorithms and data structures

• Irregularity

• Incremental data structures

• Abstract models of GPU computation
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