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e Cellulosic Ethanol
e Mercury Bioremediation

e Molecular Machines
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Lignocellulosic Biomass Exhibits
Structural Complexity

Cellulose
N

Lignins—___ - {%

Hemucellulnses/

pa*‘w‘”’

X

Cellulose

M
WMW‘*Q ~

‘?.hg-ﬁl"’l
i



Simulation Model of Lignocellulose
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Length-Scale Correspondence:
Simulation and Experiment

Simulation

Small-Angle Neutron Scattering
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3.3 million atom system. .
102 million atoms.

e 12 288 cores 27.5 ns/day
=16.9TFlops. * Scales to 150,000 cores

* 23.3 ns/day at 193TFlops.
* for pure water > 300TFlop
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Biomass Pretreatment

cellulose
lignin
hemi-
cellulose

Are Lignin Aggregates Spheres?
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Lignin Aggregates

Molecular
Dynamics
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high concentration &
crystalline cellulose
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Oak Ridge

Toxic
Methylmercury
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Catalytic Mechanism of MerB JERRY
Hg-C Protonolysis PARKS
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Large-Scale Functional
Conformational Transitions
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Muscle Contraction
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Dynamics of Muscle Contraction
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Ras p21

GTP-Bound Form
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GTP-Bound Form
(ON)
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Sampling:
Uniform Distribution
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Sampling:
Exclusion of ,,Bad Structures*
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Sampling:
Fail-Fast Minimization
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Sampling:
Increase Density of Low-Energy Points
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Transition Network:
Edges between Neighbours

31 Managed by UT-Battelle
for the Department of Energy



Connectivity of Network
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The Protein
Glass Transition

MYOGLOBIN E
i
. 020 o .
m]
Coisf : -
o Onset of i . .
> olot Protein S qu uid
. Function e
N/
s 0.05F GIaSS A .
3 Harmonic
000

150. 200. 250. 300 350
T(°K)

50. ICO.

34 Managed by UT-Battelle
for the Department of Energy




Principal Component Analysis of the
Myoglobin Glass Transition
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Mode Incipient at
Myoglobin Glass Transition
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Lattice Vibrations
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Monoclinic Ribonuclease A:

Phonon Dispersion
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- bulk chemical composition 25 distinct molecules
- linkage distribution PR —
- degree of branching

- molecular weight E—

- no optical activity

constrained tc
aggregate

Time- Interaction

Evolution <

Potential*

40 Managed by UT-Battelle
for the Department of Energy




Larger Contact Area for Crystalline and Concentrated Models
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Interaction Energies
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2. Factors Influencing Aggregation (?):
Concentration & Cellulose Crystallinity

high concentration & low concentration low concentration &
crystalline cellulose & semi- crystalline
(2 simulations) crystalline cellulose

4 imyidiens

lignin:cellulose = 0.54:1.00, lignin molecules same in all simulatioa$
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Heterogeneous
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Chain Dynamics

enhanced monomer
mobility at the surface

nanoscopic lignins have
reduced T,




SANS&MD: Highly-Folded Self-Similar
Surface
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detachment perpendicular to detachment parallel to the

nucleosome plane nucleosome plane
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Electrostatics
Kirkwood G Factor Ck (r)= Zrij<r P

40 T | T [ T [ T I

1. Shift Truncation (fast, not 1]~ E:ff
accurate) il

2. Particle Mesh Ewald (slow,
accurate)

3. Reaction Field (fast, accurate?)

r (nm) )

* RF cuts simulation time to =1/3 cf PME (10k cg
* RF improves scaling
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Lignin Precipitation

on Cellulose
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Lignin Aggregation after Pretreatment
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Inhibitory effect of lignin is determined by
1. Structure of the aggregates
2. Factors influencing Lignin re-precipitation on cellulose



Molecular Dynamics Simulation of
Protein:Protein Interactions at 150K
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