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 Cellulosic Ethanol 

 Mercury Bioremediation 

 Molecular Machines



Cellulosic Ethanol
FuelFuel

FermentationFermentation

FuelFuel

Breakdown
into sugars

HydrolysisHydrolysis

Strong

CellulosicCellulosic
BiomassBiomass
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Strong
Fermentation
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Lignocellulosic Biomass Exhibits 
Structural Complexity
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Simulation Model of Lignocellulose
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Length-Scale Correspondence:
Simulation and Experiment

Small-Angle Neutron Scattering Simulation

1000 Å / ~3.3 M atoms
INCITE XT5INCITE XT5

100 Å / ~500k atoms
INCITE XT4 10 Å /~50k atoms 

NSF Teragrid
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2007 

One Million Atoms –
Molecular Dynamics

2004 

ROLAND
SCHULZ

Cray 
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Long-Range 
Electrostatics

ROLAND
SCHULZ

3.3 million atom system. 
102 illi

y

 12 288 cores 27.5 ns/day 
= 16.9TFlops. 

102 million atoms. 

• Scales to 150,000 cores 
• 23.3 ns/day at 193TFlops.
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23.3 ns/day at 193TFlops.
• for pure water >  300TFlops..
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Biomass Pretreatment

cellulose
lignin
hemi-
cellulosecellulose

dilute acid
T>Tgg

Are Lignin Aggregates Spheres?



Lignin Aggregates

LOUKAS
PETRIDIS

Small-Angle 
Neutron Scattering

Molecular
Dynamics

Neutron Scattering
6)(  sdqqS

sdrrN )(
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ds=2.62±0.02 ds=2.65±0.01



Surface Fractals over Three Orders of Magnitude

Rg=42Å Rg=420ÅRg=4.2Å

Enzyme:lignin y g
interaction 
distribution
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sub
caged

sub-
diffusive

ballistic

Extensive Water Penetration Heterogeneous Chain Dynamics

SANS

MD

highly folded water rigid core
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rigid sphere highly folded
surface

water 
penetration

rigid core
fluid surface



Lignin Aggregation & Precipitation onto Cellulose
BENJAMIN
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high concentration &
crystalline cellulose

low concentration &
crystalline cellulose

low concentration &
semi-crystalline cellulose



Lignin Aggregation & Precipitation 
onto Cellulose

BENJAMIN
LINDNER
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Oak Ridge

Emptying Hg flasks at the dumping shed 
(1955)
Emptying Hg flasks at the dumping shed 
(1955)(1955)(1955)

Toxic
Methylmercury
CH3Hg+

Inert
Hg(0)
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MerR

-35 -10

DNA

RNAP

30º+ HgHg
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HgHg



The MerR Machine
Hao-Bo
Guo

22’
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Hg(II)



Catalytic Mechanism of MerB 
Hg-C Protonolysis

JERRY
PARKS

 Thiol bis-coordination of Hg 
at Transition State Polarizesat Transition State Polarizes 
Attacking Proton.

e- densitye- density

H Hg(II)H3CLG
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Large-Scale Functional 
Conformational Transitions

 

reactant product

ns range

s range

19 Managed by UT-Battelle
for the Department of Energy



Muscle Contraction

Thick filamentThin filament
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ATP Hydrolysis by Myosin
SONJA SCHWARZL
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BJORN WINDSHUEGEL

Dynamics of Muscle Contraction
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Ras p21

GTP-Bound Form 

(ON)
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Ras p21

GTP-Bound Form 

(ON)

GDP B d FGDP-Bound Form 

(OFF)
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Ras p21 trajectory
FRANK NOE
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Sampling:
U if Di t ib tiUniform Distribution
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Sampling:
Exclusion of Bad Structures“Exclusion of „Bad Structures
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Sampling:
Fail-Fast Minimization
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Sampling:
Increase Density of Low-Energy Points
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Transition Network:
Edges between Neighbours
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Connectivity of Network 
of Best Paths 
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Watershed



Ras Molecular Switch
ON - state OFF - state
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The  Protein 
Glass Transition
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Principal Component Analysis of the 
Myoglobin Glass Transitiony g

ALEX

  jjiiij rtrrtrA  )()(

TOURNIER

7500

35 Managed by UT-Battelle
for the Department of Energy



Mode Incipient at 
M l bi Gl T itiMyoglobin Glass Transition
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Lattice Vibrations
- PERIODIC in TIME and SPACE.
- DISPERSION RELATIONSHIP between- DISPERSION RELATIONSHIP between
FREQUENCY and WAVEVECTOR

OPTICAL

l

ACOUSTICAL
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COHERENT INELASTIC NEUTRON SCATTERING



Monoclinic Ribonuclease A:

Phonon Dispersion 

LARS 
MEINHOLD

p
Relations
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Models Based on Experimental Data

bulk chemical composition 25 distinct molecules- bulk chemical composition   
- linkage distribution
- degree of branching
- molecular weight

25 distinct molecules

molecular weight
- no optical activity

constrained to
aggregate

InteractionTime-
Evolution

Potential*
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Larger Contact Area for Crystalline and Concentrated Models 

crystalline & concentrated I
crystalline & concentrated IILignin

semi-crystalline & dilute
crystalline & dilute

crystalline & concentrated IILignin 
Precipitation 
onto Cellulose

y

semi-crystalline & dilute 

t lli t t dcrystalline concentrated 
&diluteLignin 

Aggregation 
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Interaction Energies

Cellulose:Lignin interaction 
energy is same for all models

Interface Interaction EnergyInterface Interaction Energy 
Density 

water : crystalline 
cellulose

-94 ±2  kJ/mol/nm2

Cellulose:Water interaction 
energy is more favorable for 
semi-crystalline cellulose
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water : semi-
crystalline cellulose

-107±2  kJ/mol/nm2

y



2. Factors Influencing Aggregation (?):
Concentration & Cellulose Crystallinityy y

high concentration & low concentration 
&

low concentration &

4  Simulations

crystalline cellulose
(2 simulations)

&
crystalline 

cellulose

semi- crystalline 
cellulose
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lignin:cellulose = 0.54:1.00, lignin molecules same in all simulations



Heterogeneous Chain Dynamics

enhanced monomer 
mobility at the surface

nanoscopic lignins have 
reduced Tg
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SANS&MD: Highly-Folded Self-Similar 
Surface

SANS Daggr=130Å

MD
r

R 1300ÅRg≈1300Å

overlap 
SANS-MD
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Multiscaling

Mesoscale
Coarse-Graining

ics/
nics

Quantum Mechanics/
Molecular Mechanics

Molecular Mechanics

Ab Initio
Quantum Mechanics

cs
Approximate 
Quantum Mechanics
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Length0.01nm 1nm 10nm >1µm

100ns >1µs Time



Catalytic Mechanism of 
Cellulase CelS
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MOUMITA
SAHARAY



Molecular 
Dynamics 
Scaling

Weak Scaling St rong Scaling

Scaling

100 1000
175 atoms/core 5.4 million atoms

1

Fl
op

s 100

ayTF 10
ns

/d
a

10 1,000 100,000
0.01

cores
100 1000 10000 100000
1
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Lignin

61

Rg=Segment Radius of Gyration

1

2

i
j

LOUKAS

NR

PETRIDIS

NRg 

01.032.0 
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The Nucleosome
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source: 
biology.kenyon.edu

Karine

Voltz



Boltzmann Inversion

Radial Distribution Function, g(r) Boltzmann Inverse, W(r)

W(r) =-kBT ln g(r)
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Microsecond Dynamics

Mode 1 Mode 2 Mode 3
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detachment perpendicular to 
nucleosome plane 

detachment parallel to the 
nucleosome plane 

scissor motion 



Electrostatics
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1. Shift Truncation (fast, not 
accurate)

2 Particle Mesh Ewald (slow2. Particle Mesh Ewald (slow, 
accurate)

3. Reaction Field (fast, accurate?)

• RF cuts simulation time to ≈1/3 cf PME (10k cores)
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• RF cuts simulation time to ≈1/3 cf PME (10k cores)
• RF improves scaling 



Monoclinic Ribonuclease A LARS 
MEINHOLD

DensityDensity 
of States

X-ray 
scatteringscattering

Heat 
Capacity
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BENJAMIN
LINDNERLignin Precipitation 

on Cellulose
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Lignin Aggregation after Pretreatment

cellulose
ligninlignin
hemi-
cellulose

dilute acid
T>Tg

Inhibitory effect of lignin is determined by
1. Structure of the aggregates
2 Factors influencing Lignin re-precipitation on cellulose2. Factors influencing Lignin re precipitation on cellulose



Molecular Dynamics Simulation of 
P t i P t i I t ti t 150K

VANDANA
KURKAL-SIEBERT

Protein:Protein Interactions at 150K

MbCOMbCO
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Protein:Protein Interactions
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