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Bringing Users Along the Road 
to Billion Way Concurrency
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NERSC is the Primary Computing 
Center for DOE Office of Science

•NERSC serves a large population
Over 3000 users, 400 projects, 500 codes

•NERSC Serves DOE SC Mission
–Allocated by DOE program managers

–Not limited to largest scale jobs

–Not open to non-DOE applications

•Strategy: Science First
–Requirements workshops by officey
–Procurements based on science codes
–Partnerships with vendors to meet

science requirements
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Physics Math + CS Astrophysics
Chemistry Climate Combustion
Fusion Lattice Gauge Life Sciences
Materials Other

NERSC Systems for Science

Large-Scale Computing Systems

Franklin (NERSC-5): Cray XT4
• 38,128 cores (quad core), ~25 Tflop/s on applications; 356 Tflop/s peak 

Hopper (NERSC-6): Cray XE6 
• Phase 1: Cray XT5, 668 nodes, 5344 cores
• Phase 2: > 1 Pflop/s peak (late 2010), 24-core nodes

NERSC Global 
Filesystem (NGF)

• Uses IBM’s GPFS
• 1 5 PB; 5 5 GB/s

Clusters
105 Tflops 
combined 

Carver

Analytics
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HPSS Archival Storage
• 40 PB capacity
• 4 Tape libraries
• 150 TB disk cache

1.5 PB; 5.5 GB/sCarver
• IBM iDataplex cluster

PDSF (HEP/NP)
• Linux cluster (~1K cores)

Magellan Cloud testbed

• IBM iDataplex cluster

• Euclid (512 GB 
shared 
memory)

• Dirac GPU 
testbed (48 
nodes. Fermi)
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NERSC Roadmap
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Users expect 10x improvement in capability every 3-4 years 

Challenges to Exascale

• System power is the primary constraint for exascale (MW ~= $M)

• Concurrency (1000x today) driven by system power and density

• Memory bandwidth and capacity are under pressure

• Processor architecture is an open question but heterogeneity is likely• Processor architecture is an open question, but heterogeneity is likely

• Algorithms need to be designed to minimize data movement, not flops

• Programming model memory & concurrency  new chip-level model

• Reliability and resiliency will be critical at this scale

• I/O bandwidth unlikely to keep pace with machine speed 

Why are these NERSC problems?Why are these NERSC problems?
• All are challenges for 100 “capacity” 100PF machines, except:

– System wide outages and bisection bandwidth
• NERSC needs to guide the transition of its user community
• NERSC represents broad HPC market better than any other DOE center
• Hardware revolutions affect procurement strategies (Giga->Tera)
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NERSC Response to Exascale

• Vendor partnerships

• NERSC workload and procurements• NERSC workload and procurements

• Testbeds & training

• Anticipating and changing the future
– Programming models

– AutotuningAutotuning 

– Algorithms

– Co-Design

7

Energy Efficiency Partnerships 
with Synapsense and IBM

• Monitoring for energy efficiency (and reliability!) 

600 Sensors for temperature, etc. Rear door heat exchangers

• Liquid cooling on IBM system uses return water from 
another system, with modified CDU design
– Reduces cooling costs to as much as ½

– Reduces floor space requirements by 30%

Air is colder coming out than going in!
8
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Center of Excellence with Cray

What should we tell 
NERSC users to do ?

Multicore Era: Massive on-chip 
concurrency necessary for 
reasonable power use

NERSC/Cray “Programming Models Center of Excellence” combines:

• Berkeley Lab strength in advanced programming models, multicore 
tuning, and application benchmarking

• Cray strength in advanced programming models, optimizing 
compilers, and benchmarking

reasonable power use 

Immediate question: What is the best way to use Hopper node?
• Flat MPI - Today’s preferred mode of operation
• MPI + OpenMP, MPI + pthreads, MPI + PGAS, MPI+OpenCL, PGAS…
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fvCAM MPI+OpenMP Performance
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Less Memory Usage with OpenMP
Compared to Flat MPI
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Current Procurement Strategy

Use Science Applications to Measure System Performance!

NERSC-6 “Sustained System 
Performance (SSP)” BenchmarksPerformance (SSP)  Benchmarks

CAM 
Climate

GAMESS
Quantum 
Chemistry

GTC
Fusion

IMPACT-T
Accelerator 

Physics

MAESTRO
Astro-

physics

MILC
Nuclear
Physics

PARATEC
Material
Science

Peak FLOPs offer little insight into delivered application performance

14

Peak FLOPs offer little insight into delivered application performance
SSP applications model delivered performance of REAL workload

“Benchmarks are only useful insofar as they 
model the intended workload”

Ingrid Bucher (LANL 1978)
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Algorithm Diversity

Science areas
Dense 
linear 

algebra

Sparse 
linear 

algebra

Spectral 
Methods 
(FFT)s

Particle 
Methods

Structured 
Grids

Unstructured or 
AMR Grids

Accelerator
Science XX XX XX XX XXScience

Astrophysics XX XX XX XX XX XX

Chemistry XX XX XX XX

Climate XX XX XX

Combustion XX XX

F i XX XX XX XX XXFusion XX XX XX XX XX

Lattice Gauge XX XX XX XX

Material Science XX XX XX XX

NERSC users require a system which performs 
adequately in all areas  

Numerical Methods at NERSC
(Caveat: survey data from ERCAP requests)

35%

Methods at NERSC
Percentage of 400 Total Projects

5%

10%

15%

20%

25%

30%

16

0%

5%
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Revolutions Require a New Strategy

• Preserve Application Performance as goal
– But, allow significant optimizations

– Produced optimized versions of some codes– Produced optimized versions of some codes

– Understand performance early

• E.g., for Fermi-based GPU system
– Fermi is nearly as expensive as host node

– 48 nodes w/Fermi or 2x more nodes without

– Minimum: Fermi must be 2x faster than hostMinimum: Fermi must be 2x faster than host

• Estimating value of acceleration for SSP
– Estimate “best possible performance”

– Successive refinement of estimates

– Stop if estimate < min threshold (2x host)
17

Dirac Testbed at NERSC

• Dirac is a 48 nodes GPU cluster

• 44 Fermi nodes
– 3GB memory per card 

– @~144GB/s bandwidth + ECC

– ~1TF peak single precision and 500 GF/s DP

– 24 GB of memory per node

4 T l d

Paul Dirac, Nobel prize-
winning Theoretical Physicist

• 4 Tesla nodes

• QDR Infiniband network 
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Ri-MP2: Molecular Equilibrium 
Structure

• Goal: Optimize Q-Chem RI-MP2 Routine
– Start with “step 4” kernel, which 

dominates the running time
Observations– Observations
– Impressive single node speedups
– Performance results highly dependent 

on molecular structure
Fermi GPU Racks - NERSC

x 18.8
x 7.4

x 1.7

x 12.3

Jihan Kim (SciDAC-E NERSC Postdoc)

GTC (Fusion) Charge Deposition 
Performance

Fermi
Tesla

Optimizing GTC (Fusion code) Charge Deposition for Multicore and GPUs

K. Ibrahim, K. Madduri, L. Oliker, S. Williams, 
E.-J. Im, E. Strohmaier, S. Ethier, J. Shalf

A2      A5      A10    A20     B2      B5
configuration
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Fermi Memory Bandwidth

Anticipating and Influencing the Future

22
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Autotuning: Write Code 
Generators for Nodes

+Z
y-1

z+1

1

Nearest-neighbor 7point stencil on a 3D array

Use Autotuning!

3D Grid

+Y

+X

7-point nearest neightbors

y+1

y

x-1

z-1

x+1
x,y,z

Write code generators 
and let computers do 

tuning

23

Example pattern-specific compiler: 
Structured grid in Ruby

• Ruby class 
encapsulates SG 
pattern

•class LaplacianKernel < Kernel
• def kernel(in_grid, out_grid)
• in_grid.each_interior do |point|
• in_grid.neighbors(point,1).each 

do |x|
p
– body of anonymous 

lambda specifies filter 
function

• Code generator 
produces OpenMP for 
m lticore 86

do |x|
• out_grid[point] += 0.2*x.val
• end
• end
•end

•VALUE kern_par(int argc, VALUE* argv, VALUE 
self) {
•unpack_arrays into in_grid and out_grid;

•#pragma omp parallel for default(shared)  multicore x86
– ~1000-2000x faster than 

Ruby

– Minimal per-call runtime 
overhead

#pragma omp parallel for default(shared)  
private (t_6,t_7,t_8)
•for (t_8=1; t_8<256-1; t_8++) {
• for (t_7=1; t_7<256-1; t_7++) {
• for (t_6=1; t_6<256-1; t_6++) {
• int center = INDEX(t_6,t_7,t_8);
• out_grid[center] = (out_grid[center]
• +(0.2*in_grid[INDEX(t_6-
1,t_7,t_8)]));
• ...
• out_grid[center] = (out_grid[center]
•
+(0 2*in grid[INDEX(t 6 t 7 t 8+1)]));



3/14/2011

13

PGAS Languages: Why use 2 Languages 
(MPI+X) when 1 will do?

• Global address space: thread may directly read/write remote data 
• Partitioned: data is designated as local or global

G
lo

b
al

 a
d

d
re

ss
 s

p
ac

e

x: 1
y: 

l: l: l: 

g: g: g: 

x: 5
y: 

x: 7
y: 0

p0 p1 pnp p p

• Remote put and get: never have to say “receive” 
• No less scalable than MPI! 
• Permits sharing, whereas MPI rules it out!
• Gives affinity control, useful on shared and distributed memory

Hybrid Partitioned Global Address 
Space

•Shared 
Segment 
on Host 

•Shared 
Segment 
on GPU 
M

•Shared 
Segment 
on Host 
M

•Shared 
Segment 
on GPU 
M

•Shared 
Segment 
on Host 
M

•Shared 
Segment 
on GPU 
M

•Shared 
Segment 
on Host 
M

•Shared 
Segment 
on GPU 
M

•Local 
Segment 
on Host 
•Memory

•Processor 1

Memory

•Local 
Segment 
on GPU 
•Memory

•Local 
Segment 
on Host 
•Memory

•Processor 2

•Local 
Segment 
on GPU 
•Memory

•Local 
Segment 
on Host 
•Memory

•Processor 3

•Local 
Segment 
on GPU 
•Memory

•Local 
Segment 
on Host 
•Memory

•Processor 4

•Local 
Segment 
on GPU 
•Memory

 Each thread has only two shared segments

Memory Memory Memory Memory Memory Memory Memory

 Each thread has only two shared segments 
 Decouple the memory model from execution models; one 

thread per CPU, vs. one thread for all CPU and GPU “cores”
 Caveat: type system and therefore interfaces blow up with 

different parts of address space
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GASNet GPU Extension Performance

Latency Bandwidth
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Communication-Avoiding 
Algorithms

• Consider Sparse Iterative Methods
• Nearest neighbor communication on a mesh
• Dominated by time to read matrix (edges) from DRAM• Dominated by time to read matrix (edges) from DRAM
• And (small) communication and global 

synchronization events at each step

Can we lower data movement costs?
• Take k steps “at once” with one matrix read 

from DRAM and one communication phase
Parallel implementation– Parallel implementation

O(log p) messages vs.  O(k log p) 

– Serial implementation
O(1) moves of data  moves vs. O(k)

Joint work with Jim Demmel, Mark 
Hoemman, Marghoob Mohiyuddin
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“Monomial” basis [Ax,…,Akx]  

fails to converge

• A different polynomial basis does

Know your mathematics!

A different polynomial basis does 
converge

Communication-Avoiding 
GMRES on 8-core Clovertown
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Co-Design Before its Time

• Demonstrated during SC ‘09
• CSU atmospheric model ported to 

low-power core design
D l C T ili i– Dual Core Tensilica processors running 
atmospheric model at 25MHz

– MPI Routines ported to custom Tensilica 
Interconnect

• Memory and processor Stats 
available for performance analysis

• Emulation performance advantage
250x Speedup over merely function

Icosahedral mesh 
for algorithm scaling

– 250x Speedup over merely function 
software simulator

• Actual code running - not 
representative benchmark

General Lessons

• Early intervention with hardware designs

• Optimize for what is important: Opt e o at s po ta t

energy  data movement

• Anticipating and changing the future
– Programming models

– Autotuning 

– AlgorithmsAlgorithms

– Co-Design

32
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NERSC Aggressive Roadmap
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( )
•19 TF Sustained
•101 TF Peak

•36 TF Sustained
•352 TF Peak

33

•Users expect 10x improvement in capability every 3-4 years 

•Three continents, three institutions

•UC Berkeley/LBNL/NERSC

•University of Heidelberg and 

•National Astronomical Observatories (CAS)

•Horst Simon
•Hemant Shukla

•John Shalf•ICCS Projects John Shalf
•Rainer Spurzem

•ICCS Activities
•Summer School Aug 2-6, 2010

•Proven Algorithmic Techniques for Many-core Processors

•Wen-Mei Hwu (UIUC) and David Kirk (NVIDIA)

•ISAAC is a three-year (2010-2013) NSF funded project to focus 
on research and development of infrastructure for accelerating 
physics and astronomy applications using and multicore 
architectures.

•Goal is to successfully harness the power of the parallel 
architectures for compute-intensive scientific problems and open 

•ISAA
C•Infrastructure for Astrophysics Applications Computing

j

•GRACE II

•SILK ROAD

•Workshop Nov 30 – Dec 2, 2009

•Many-core and Accelerator-based Computing for Physics 
and Astronomy Applications 

•

p p p
doors for new discovery and revolutionize the growth of science 
via, Simulations, Instrumentations and Data processing 
/analysis

•Visit us – http://iccs.lbl.gov
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Performance Has Also Slowed, 
Along with Power

1.E+06

1.E+07

Transistors (in Thousands)

Moore’s Law Continues with core doubling
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Perf

Cores

35
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1.E+00

1970 1975 1980 1985 1990 1995 2000 2005 2010

•Data from Kunle Olukotun, Lance Hammond, Herb Sutter, 
Burton Smith, Chris Batten, and Krste Asanoviç

Memory is Not Keeping Pace

•Technology trends against a constant or increasing memory per core
• Memory density is doubling every three years; processor logic is every two

• Storage costs (dollars/Mbyte) are dropping gradually compared to logic costs

•Source: David Turek, IBM

•Cost of Computation vs. Memory

•Source: IBM

36

• Question: Can you double concurrency without doubling memory?



3/14/2011

19

How to make use of 100,000 
(or more!) cores?

37

7 Point Stencil Revisited

38

• Cell and GTX280 are notable for both performance and 
energy efficiency

•Joint work with Kaushik Datta, Jonathan Carter, 
Shoaib Kamil, Lenny Oliker, John Shalf, and Sam 
Williams
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#2: Understand your machine limits

The “roofline” model

S. Williams, D. Patterson, L. Oliker, J. Shalf, K. Yelick

39

The Roofline Performance Model

• The top of the roof is 
determined by peak 
computation rate

peak DP64.0

128.0

256.0 Generic Machine

computation rate 
(Double Precision 
floating point, DP for 
these algorithms)

• The instruction mix, 
lack of SIMD 
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The Roofline Performance Model

peak DP
64.0
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Roofline model for Stencil
(out-of-the-box code)

 Large datasets
 2 unit stride streams
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Roofline model for Stencil
(out-of-the-box code)

 Large datasets
 2 unit stride streams
 No NUMA 
 Littl ILPbl
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Roofline model for Stencil
(NUMA, cache blocking, unrolling, prefetch, …)

 Cache blocking helps 
ensure flop:byte ratio is as 
close as possible to 1/3
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Roofline model for Stencil
(SIMDization + cache bypass)

 Make SIMDization 
explicit

 Use cache bypass 
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#3) Write Code Generators Rather 
Than Code (LBMHD)

Intel Clovertown AMD Opteron LBMHD is not always bandwidth 
limited: used SIMD, etc.

Sun Niagara2 (Huron) IBM Cell Blade* +SIMDization

+SW Prefetching

+Unrolling

+Vectorization

+Padding

Naïve+NUMA

•Joint work with Sam 
Williams, Lenny Oliker, John 
Shalf, and Jonathan Carter

#4) Used Optimized Librarites: 
( Sparse Matrix Vector Multiplication)

• Sparse Matrix
– Most entries are 0.0
– Performance advantage in only 

i / i hstoring/operating on the nonzeros
– Requires significant meta data

• Evaluate y=Ax
– A is a sparse matrix
– x & y are dense vectors

• Challenges
– Difficult to exploit ILP(bad for superscalar)

A x y

•Protein
•FEM /

•Spheres
•FEM /

•Cantilever

48

Difficult to exploit ILP(bad for superscalar), 
– Difficult to exploit DLP(bad for SIMD)
– Irregular memory access to source vector
– Difficult to load balance
– Very low computational intensity  (often >6 bytes/flop)

= likely memory bound

•FEM /
•Accelerator

•Circuit •webbase
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Extra Work Can Improve Efficiency!

• Example: 3x3 blockingp g
– Logical grid of 3x3 cells

– Fill-in explicit zeros

– Use only 1 index per block, 
rather than per nonzero

– Unroll 3x3 block multiplies

– “Fill ratio” = 1.5

• On Pentium III: 1.5x speedup!
– (Actual mflop rate = 2.25 

higher)

Naïve Parallel Implementation

• SPMD style

• Partition by rows

• Load balance by 
nonzeros

AMD OpteronIntel Clovertown

• N2 ~ 2.5x x86 machine

IBM Cell Blade (PPEs)Sun Niagara2 (Huron)

50

Naïve Pthreads

Naïve
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• SPMD style

• Partition by rows

• Load balance by 
nonzeros

Naïve Parallel Implementation

AMD OpteronIntel Clovertown

8x cores = 1.9x performance8x cores = 1.9x performance
• N2 ~ 2.5x x86 machine

IBM Cell Blade (PPEs)Sun Niagara2 (Huron)

pp

4x cores = 1.5x performance4x cores = 1.5x performance

64x threads = 41x performance64x threads = 41x performance

51

Naïve Pthreads

Naïve

pp

4x threads = 3.4x performance4x threads = 3.4x performance

• SPMD style

• Partition by rows

• Load balance by 
nonzeros

Naïve Parallel Implementation

AMD OpteronIntel Clovertown

1.4% of peak flops

29% of bandwidth

1.4% of peak flops

29% of bandwidth 4% of peak flops

20% f b d idth

4% of peak flops

20% f b d idth • N2 ~ 2.5x x86 machine

IBM Cell Blade (PPEs)Sun Niagara2 (Huron)

20% of bandwidth20% of bandwidth

25% of peak flops

39% f b d idth

25% of peak flops

39% f b d idth

52

Naïve Pthreads

Naïve

39% of bandwidth39% of bandwidth

2.7% of peak flops

4% of bandwidth

2.7% of peak flops

4% of bandwidth
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Autotuned Performance
(+DIMMs, Firmware, Padding)

• Clovertown was already fully 
populated with DIMMs

• Gave Opteron as many 
DIMMs as Clovertown

• Firmware update for

AMD OpteronIntel Clovertown

Firmware update for 
Niagara2

• Array padding to avoid inter-
thread conflict misses

• PPE’s use ~1/3 of Cell chip 
area

IBM Cell Blade (PPEs)Sun Niagara2 (Huron)
+More DIMMs(opteron), 
+FW fix, array padding(N2), etc…

53

+Cache/TLB Blocking

+Compression

+SW Prefetching

+NUMA/Affinity

Naïve Pthreads

Naïve

Autotuned Performance
(+Cell/SPE version)

• Wrote a double precision 
Cell/SPE version

• DMA, local store 
blocked, NUMA aware, 
etc…

•AMD Opteron•Intel Clovertown

etc…
• Only 2x1 and larger 

BCOO
• Only the SpMV-proper 

routine changed 

• About 12x faster 
(median) than using the 
PPEs alone. •IBM Cell Blade (SPEs)•Sun Niagara2 (Huron)

•+More DIMMs(opteron), 
•+FW fix, array padding(N2), etc…

54

•+Cache/TLB Blocking

•+Compression

•+SW Prefetching

•+NUMA/Affinity

•Naïve Pthreads

•Naïve
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• Wrote a double precision 
Cell/SPE version

• DMA, local store 
blocked, NUMA aware, 
etc…

Autotuned Performance
(+Cell/SPE version)

AMD OpteronIntel Clovertown

4% of peak flops

52% of bandwidth

4% of peak flops

52% of bandwidth
20% of peak flops

65% of bandwidth

20% of peak flops

65% of bandwidth etc…
• Only 2x1 and larger 

BCOO
• Only the SpMV-proper 

routine changed 

• About 12x faster than 
using the PPEs alone. 

IBM Cell Blade (SPEs)Sun Niagara2 (Huron)
+More DIMMs(opteron), 
+FW fix, array padding(N2), etc…

54% of peak flops

57% f b d idth

54% of peak flops

57% f b d idth 40% of peak flops40% of peak flops

55

+Cache/TLB Blocking

+Compression

+SW Prefetching

+NUMA/Affinity

Naïve Pthreads

Naïve

57% of bandwidth57% of bandwidth 40% of peak flops

92% of bandwidth

40% of peak flops

92% of bandwidth

MPI vs. Threads

• On x86 machines, 
autotuned(OSKI) shared 
memory MPICH 
implementation rarely 
scales beyond 2 threads

•AMD Opteron•Intel Clovertown

• Still debugging MPI 
issues on Niagara2, but 
so far, it rarely scales 
beyond 8 threads.

•Sun Niagara2 (Huron)

56

•Autotuned pthreads

•Autotuned MPI

•Naïve Serial
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Optimized Sparse Kernel 
Interface  - OSKI

• Provides sparse kernels automatically tuned             
for user’s matrix & machine
– BLAS-style functionality: SpMV, Ax & ATy, TrSV

– Hides complexity of run-time tuning

– Includes new, faster locality-aware kernels: ATAx, Akx

• Faster than standard implementations
– Up to 4x faster matvec, 1.8x trisolve, 4x ATA*x

• For “advanced” users & solver library writersy
– Available as stand-alone library (OSKI 1.0.1h, 6/07)

– Available as PETSc extension (OSKI-PETSc .1d, 3/06)

– Bebop.cs.berkeley.edu/oski

Programming Model for Multicore

• These autotuned implementations, use:
– Fixed set of threads (pthreads)

• “Parallel all the time”

– Shared memory
• Avoid unnecessarily replication

– Logically partitioned memory with affinity
• Avoid unnecessary cache coherence traffic

• What programming model offers these?

58
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PGAS Languages: Why use 2 Languages 
(MPI+X) when 1 will do?

• Global address space: thread may directly read/write remote data 
• Partitioned: data is designated as local or global

G
lo

b
al

 a
d

d
re

ss
 s

p
ac

e

x: 1
y: 

l: l: l: 

g: g: g: 

x: 5
y: 

x: 7
y: 0

p0 p1 pnp p p

• Remote put and get: never have to say “receive” 
• Remote function invocation?  See HPCS languages

• No less scalable than MPI! 
• Permits sharing, whereas MPI rules it out!
• One model rather than two, but if you insist on two:

• Can call UPC from MPI and vice verse (tested and used)

#5) Used Lightweight Communication

8-byte Roundtrip Latency

Use a programming model in which you can 
utilize bandwidth and “low” latency

Flood Bandwidth for 4KB messages
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Joint work with Berkeley UPC Group
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Two-sided vs One-sided 
Communication

•message id •data payload

one sided put message

•two-sided message

•network

•host
•CPU

• Two-sided message passing (e.g., MPI) requires 
matching a send with a receive to identify memory 
address to put data

•address •data payload

•one-sided put message
• interface

•memory

p
– Wildly popular in HPC, but cumbersome in some applications
– Couples data transfer with synchronization

• Using global address space decouples synchronization
– Pay for what you need!  
– Note: Global Addressing ≠ Cache Coherent Shared memory

Joint work with Dan Bonachea, Paul Hargrove, 
Rajesh Nishtala and rest of UPC group

Case Study Update: NAS FT 

• Perform a large 3D FFT

– Represents  bisection-bandwidth limited algorithms

• Builds on our previous work, but with a 2D partition

– Requires two rounds of communication rather than oneq

– Each processor communicates with O(√T) threads

• Leverage nonblocking communication
– Packed: minimize messages, no overlap

– Slab: no packing, one message per plane per “other” thread

62
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FFT Performance on BlueGene/P
HPC Challenge Peak as of July 09 is 
~4.5 Tflops on 128k Cores

 PGAS implementations 
consistently outperform MPI

 Leveraging 
communication/computation 3500communication/computation 
overlap yields best 
performance
 More collectives in flight 

and more communication 
leads to better 
performance

 At 32k cores, overlap 
algorithms yield 17% 
improvement in overall
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MPI Packed Slabs

improvement in overall 
application time

 Numbers are getting close to 
HPC record 
 Future work to try to beat 

the record
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FFT Performance on Cray XT4
• 1024 Cores of the Cray XT4

– Uses FFTW for local FFTs

– Larger the problem size the more effective the overlap
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G
O
O
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#6) Avoid Synchronization

Computations as DAGs
View parallel executions as the directed acyclic graph of the 
computation 

65

CholeskyCholesky

4 x 44 x 4

QRQR

4 x 44 x 4

Slide source: Jack Dongarra

Parallel LU Factorization

Blocks 2D
block-cyclic
distributedCompleted part of U

Panel factorizations
involve communication
for pivoting Matrix-

matrix
multiplication
used here.
Can be coalesced

C
om

pleted part o

A(i,j) A(i,k) 

A(j,i) A(j,k) 

Trailing matrixof L

Trailing matrix
to be updated

Panel being factored
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Event Driven Execution of Dense LU

• Ordering needs to be imposed on the schedule
• Critical operation: Panel Factorization

– need to satisfy its dependencies firsty p
– perform trailing matrix updates with low block numbers first
– “memory constrained” lookahead

• General issue: dynamic scheduling in partitioned memory
– Can deadlock memory allocator!

some edges omitted

DAG Scheduling Outperforms 
Bulk-Synchronous Style

UPC vs. 

PLASMA on shared memory UPC on partitioned memory

ScaLAPACK
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UPC

68

• UPC LU factorization code adds cooperative (non-
preemptive) threads for latency hiding
– New problem in partitioned memory: allocator deadlock
– Can run on of memory locally due tounlucky execution order

PLASMA by Dongarra et al; UPC LU joint with 
Parray Husbands
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#7) Use Scalable Algorithms

• Algorithmic gains in last decade have                                    
far outstripped Moore’s Law

–Adaptive meshes
rather than uniform

–Sparse matrices 
rather than dense

–Reformulation of 
problem back to basics

• Algorithmic gains have                                                             
outstripped Moore’s Lawoutst pped oo e s a

• Example of canonical “Poisson” problem on n points:
–Dense LU: most general, but O(n3) flops on O(n2) data
–Multigrid: fastest/smallest, O(n) flops on O(n) data

Performance results: John Bell et al

Conclusions

• Use your communication systems 
effectivelyy
– On-chip communication between cores

– Communication between processor and 
memory

– Communication between sockets

Communication between nodes– Communication between nodes

• Work with experts on hardware, software, 
algorithms, applications

70
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More Info

• The Berkeley View/Parlab
– http://view.eecs.berkeley.edu

http://parlab eecs berkeley edu/– http://parlab.eecs.berkeley.edu/

• Berkeley Autotuning and PGAS projects
– http://bebop.cs.berkeley.edu
– http://upc.lbl.gov
– http://titanium.cs.berkeley.edu

• NERSC System Architecture Groupy p
– http://www.nersc.gov/projects/SDSA

• LBNL Future Technologies Group
http://crd.lbl.gov/ftg


