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Our motivating application is the simulation of fusion 

reactor edge plasmas

The edge pedestal density (ne) and temperature (Te) 

profiles near the edge of an H-mode discharge in the 

DIII-D tokamak. The horizontal scale is distance from 

nominal boundary of the plasma at R= 2.34m [from G.D. 

Porter, et al., Phys. Plasmas 7 (7), 3663 (Sept. 2000)]. 

Simulation of edge plasma turbulence in tokamak 

fusion reactors requires kinetic models to describe 

phenomena such as the formation of the pedestal, 

a steep-gradient region that develops 

spontaneously in high-performance (H-mode) 

discharges.



Gyrokinetic models are well established in plasma 

physics, but raise new challenges for edge simulation

• Used to simulate core turbulence for many years

– GS2 (Dorland, Kotschenreuther)

– GENE (Jenko)

– GYRO (Candy)

• Describes the evolution of distribution functions f(t,x,v) 

in (x,v) phase space, decoupling the gyromotion from 

the remaining dynamics 

• Relies on the asymptotic development of a coordinate 

system in which distribution functions are symmetric 

with respect to gyrophase (which can then be ignored)

– Reduces 6D phase space to 5D

– Removes the gyrofrequency as a fast time scale

– Validity of orderings in all regimes is still an open 

research question

– Leads to more complicated field models

• Often assumes a “ f” formulation: f = f0 + f, where f0
is a known Maxwellian distribution

– Facilitates some linearization

– Helps reduce noise in particle codes

– But, we don’t know f0 in the edge

Source:  http://iter.rma.ac.be



The gyrokinetic Vlasov equation describes the 

evolution of plasma species distribution functions

• The magnetic moment                        is 
assumed a constant of the motion

• Phase space volume is conserved

Larmor number (normalized gyroradius)

The gyrokinetic Vlasov equation is 

expressed in conservation form as:

describes the evolution of a distribution 

function                   in gyrocenter phase space 

coordinates, which in turn evolve as 
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The ion species number density is the sum of gyrophase-independent and gyrophase-dependent parts:

Calculation of the charge density from gyrocenter 

dfns makes the Poisson solve more complicated

Gyroaveraged gyrocenter density: Polarization density (long wavelength 

limit  (                 )1k

Gyrokinetic Poisson equation:

i = species index
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Poisson:

x= lab frame coordinate



Plasma edge geometries can be gridded using mapped 

multiblock coordinates

Computational 

coordinates

Physical 

coordinates

In 2D: A poloidal slice of the plasma edge is 

mapped to a multiblock, locally rectangular grid

Mapping

Flux surface label

Poloidal 

angle

In 3D: A toroidal component is added

• The equilibrium magnetic field 

determines a mapping from physical 

to computational coordinates

• Alignment with flux surfaces 

facilitates treatment of strong 

anisotropies in discretization



Our finite volume discretization is based on a 

general, mapped grid formalism

Spatial domain discretized as a union of 

rectangular control volumes

Divergence theorem and coordinate change:

where Ad are the high and low faces bounding 

V with normals pointing in the d
th

coordinate 

direction.

Then

where A(p|v) denotes the matrix obtained by replacing 

the pth row of the matrix A by the vector v.

where

and

Cartesian coordinates: Mapped coordinates:

Fourth-order accurate flux divergence average is obtainable from fourth-order 

accurate cell face averages:

second-order accurate 

centered difference of

Smooth mapping from abstract Cartesian 

coordinates into physical space
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Free-streaming is preserved in a natural way

Hence

where E§d,d' are the (hyper)edges on the low and high sides of Ad in the d„ direction.
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1 “Invariant form”, Thomas and Neier, 

J. Spacecr. Rockets 27(2), 1990

“Conservative form”, Thomas and 

Lombard, AIAA J., 17(10), 1979.

Kopriva, J. Sci. Comput. 26(3), 2006

where “Metric identities”



COGENT (COntinuum Gyrokinetic Edge New Technology)

• Continuum GK equations in conservative form (T. S. Hahm, 1996)

• Geometry handled by flux surface aligned mapped multiblock grids

• 4th-order, finite-volume, mapped grid formalism

• Spatial discretization based on limited, centered fluxes

• RK4 time integrator

• Arbitrary number of plasma species

• PCG solver for long wavelength GK Poisson equation with kinetic electrons

• Boltzmann electron option

• Built on Chombo infrastructure (leveraging APDEC SciDAC effort):

– Future development path to adaptive mesh refinement

– Parallel in all phase space dimensions, with independent domain 

decomposition for configuration, velocity and phase space

– Support for the 4th-order, finite-volume, mapped grid formalism



COGENT includes a Boltzmann electron option solved 

with a Newton-Krylov iteration
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solve the Jacobian system with 

BiCGStab with a two-phase 

preconditioner:

• P projected (tridiagonal solve)

• (I-P) projected (Hypre multigrid)

Using the projection

GK Poisson-Boltzmann Newton Jacobian:
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A geodesic acoustic mode (GAM) is an eigenmode of 

the GK Vlasov-Poisson system in a torus

A GAM is a consequence of the 

components of the E X B force acting 

to keep particles on field lines, which is 

related to the geodesic curvature, 

which is related to the safety factor q.
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Dispersion analyses yield frequencies 

and damping rates, e.g., for q large 

(Gao et al., Phys. Plasmas 15, 072511 

(2008)):
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Ion acoustic waves exist even in 

collisionless plasmas:

Collisionless damping can occur 

depending upon      and the 

distribution function shape
sv



GAM density and potential in the Miller equilibrium 

geometry

Density Potential



COGENT predictions of GAM frequencies and damping 

rates agree with analytic dispersion models

Potential at fixed 

probe at outboard 

midplane vs. time



Comparison of GAM runs at varying phase space 

resolution verifies fourth-order convergence

Grid 

refinement 

level (N)

Grid 

(radial x 

poloidal x 

vparallel x 

mu)

Estimated 

density 

error

conv. rate 

(r)

Richardson  

extrapolated 

density error (

1
8 x 32 x

32 x 8

2
16 x 64 x 

64 x 16

3
32 x 128 x 

128 x 32

3.8 (L1 )

3.8 (L2)

4.1 (Max)

3.37 x 10-7 (L1)

6.03 x 10-7 (L2)

1.95 x 10-4 (Max)

4
64 x 256 x 

256 x 64

4.2 (L1)

4.1 (L2)

3.6 (Max)

1.40 x 10-8 (L1 )

2.95 x 10-7 (L2)

1.69 x 10-5 (Max)

Rate estimate:   r = log(di+1/di) / log(2)

di = || ni+1 – ni ||x,        x = L1, L2, Max Error estimate:  = log(di) / (1 + 2r )

ni = density at refinement level i



Our algorithm development supports the Edge Simulation Laboratory 

(ESL) roadmap for a continuum edge plasma simulation capability

Codes validated 

with experiment

Gyrokinetic models

Nonlinear, full-f phase space 

advection model

• Multiblock diverted geometry

• Field line shear in 5D

Collision model

• Target operator TBD

• Mapped FV discretization

applicable to Fokker-

Planck-type operators

Algorithms with well 

understood and 

controllable (phase) 

spatial and temporal 

error

Exascale capabilities

Improved gyrokinetic 

models or ?

Multiresolution and 

multiscale algorithms

• IMEX

• AMR

Verified model implementation


