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Our motivating application is the simulation of fusion

reactor edge plasmas

Simulation of edge plasma turbulence in tokamak
fusion reactors requires kinetic models to describe
phenomena such as the formation of the pedestal,
a steep-gradient region that develops
spontaneously in high-performance (H-mode)

discharges.
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The edge pedestal density (ne) and temperature (Te)
profiles near the edge of an H-mode discharge in the
DIII-D tokamak. The horizontal scale is distance from
nominal boundary of the plasma at R= 2.34m [from G.D.
Porter, et al., Phys. Plasmas 7 (7), 3663 (Sept. 2000)].



Gyrokinetic models are well established in plasma
physics, but raise new challenges for edge simulation

Used to simulate core turbulence for many years
— GS2 (Dorland, Kotschenreuther)
— GENE (Jenko)
— GYRO (Candy)

+ Describes the evolution of distribution functions f(t,x,v)

in (X,v) phase space, decoupling the gyromotion from
the remaining dynamics

* Relies on the asymptotic development of a coordinate

system in which distribution functions are symmetric
with respect to gyrophase (which can then be ignored)

— Reduces 6D phase space to 5D

— Removes the gyrofrequency as a fast time scale
— Validity of orderings in all regimes is still an open
research question
— Leads to more complicated field models
«  Often assumes a “3f" formulation: f = f, + &f, where f,
is a known Maxwellian distribution
— Facilitates some linearization
— Helps reduce noise in particle codes
— But, we don't know f, in the edge
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The gyrokinetic Vlasov equation describes the
evolution of plasma species distribution functions

*

oB, f . . 0 ,
I ; —

describes the evolution of a distribution
function f(R,v,,xt) in gyrocenter phase space
coordinates, which in turn evolve as

La
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where
B =B+La~!Vyxb B =b-B’
G zzchm%vRB
B equilibrium magnetic field B E‘B‘
b=B/B

@ equilibrium potential

La Larmor number (normalized gyroradius)

- The magnetic moment x=mv;/2B is
assumed a constant of the motion ( =0)

* Phase space volume is conserved

oy L 0 o
V(B R)+E”(B”v”):0

The gyrokinetic Vlasov equation is
expressed in conservation form as:
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Calculation of the charge density from gyrocenter
dfns makes the Poisson solve more complicated

Poisson:
X =lab frame coordinate

£,AD(X) = e(ne (X) - Z Zn, (x)j

i = species index

The ion species number density is the sum of gyrophase-independent and gyrophase-dependent parts:

n, () =11, () + i, ()

v N

Gyroaveraged gyrocenter density: Polarization density (long wavelength
limit (k¢p<<l )

100 =27 [0, 4.08; (v )y da ()= =5V, (0,V,.0(0)

Gyrokinetic Poisson equation:

v{gol +ezz%(| —bbT)}VcD} = e[ne —Zziﬁij



Plasma edge geometries can be gridded using mapped
multiblock coordinates

In 2D: A poloidal slice of the plasma edge is
mapped to a multiblock, locally rectangular grid
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 Alignment with flux surfaces
facilitates treatment of strong

anisotropies in discretization In 3D: A toroidal component is added



Our finite volume discretization is based on a
general, mapped grid formalism

Cartesian coordinates:

Spatial domain discretized as a union of
rectangular control volumes

Vi =[i,—3,i +$1x[i, - 5.ip +73]
Divergence theorem and coordinate change:

jv Fdx= Y Z+ J.(N F),dA,

+=+,—d=1

i, + 2% x[ip —

where A, are the high and low faces bounding
V with normals pointing in the d™ coordinate
direction.

Mapped coordinates:

Smooth mapping from abstract Cartesian
coordinates into physical space

X=X(E), X:[01]° >R"
Then 1
Vy -szvé-(NTF)
J =det(V.X), (N"),,=det[(V.X)(p|e")]

where A(p|v) denotes the matrix obtained by replacing
the p™ row of the matrix A by the vector v.

Fourth-order accurate flux divergence average is obtainable from fourth-order

accurate cell face averages:

jvx ‘Fdx=h"* ii F, .

1
2
X(V;) t=+,-d=1

where Flil _Z<Nj>|+1ed< S>|+1ed

+O(h*)
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Free-streaming is preserved in a natural way
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For any smooth mapping Z oF =0 where N=(N;)=JV,§ “Metric identities”
d=1 d
. . S 1 S an d' S S
There exist functions Mj,,d#d'suchthat | Nj=> —=% o, M =-Mg.
d=d’ d'
NS =—[V. x(xV.x)],, d=123 (d,I,m)cyclic “Conservative form”, Thomas and
Lombard, AIAA J., 17(10), 1979.
Ng =[V,x(x,V:x)]l;, d=123, (d,I,m)cyclic Kopriva, J. Sci. Comput. 26(3), 2006

:%[v: X (X, VX =XV x )], d=123 (d,l,m)cyclic “Invariant form”, Thomas and Neier,
J. Spacecr. Rockets 27(2), 1990

Hence

_[N dA, =Y >+ [M;,dE,

+=+,1d"=d Eig

where £+, ; are the (hyper)edges on the low and high sides of A, in the d* direction.



COGENT (COntinuum Gyrokinetic Edge New Technology)

» Continuum GK equations in conservative form (T. S. Hahm, 1996)

» Geometry handled by flux surface aligned mapped multiblock grids

« 4h-order, finite-volume, mapped grid formalism

» Spatial discretization based on limited, centered fluxes

* RKA4 time integrator

 Arbitrary number of plasma species

» PCG solver for long wavelength GK Poisson equation with kinetic electrons
« Boltzmann electron option

 Built on Chombo infrastructure (leveraging APDEC SciDAC effort):
— Future development path to adaptive mesh refinement

— Parallel in all phase space dimensions, with independent domain
decomposition for configuration, velocity and phase space

— Support for the 4™-order, finite-volume, mapped grid formalism



COGENT includes a Boltzmann electron option solved
with a Newton-Krylov iteration

<Z z_ﬁ.>_ Average over j-th flux surface
J

~(op(p/T,)) Xplo/Te) (W) =Y w,u(r,,6)

GK Poisson-Boltzmann Newton Jacobian:

J= —VNT[De Zm —bb'") ]NV+diagj[Nj(q))(l —e'w;D;(9))]
Using the projection <Z Zn
Pzdiagj(ewz) Nj(@)E T JDj(@)
solve the Jacobian system with e=(11..1)

BiCGStab with a two-phase
preconditioner:

P projected (tridiagonal solve)
« (I-P) projected (Hypre multigrid) D;(p) =(exp(/T,)). “diag{"™ (exp(e;,)T.)

W; E(Wj,11Wj,2""’Wj N)



A geodesic acoustic mode (GAM) is an eigenmode of
the GK Vlasov-Poisson system in a torus

lon acoustic waves exist even in A GAM is a consequence of the
collisionless plasmas: components of the E X B force acting
to keep particles on field lines, which is
1/2 i
o T +7T relf_;lteq to the geodesic curvature,
X =V, = T which is related to the safety factor q.
i
Dispersion analyses yield frequencies
Collisionless damping can occur and damping rates, e.g., for q large
depending upon v, and the (Gao et al., Phys. Plasmas 15, 072511
distribution function shape (2008)):

) (7 jvtf 46 +327 +87°
0" = —+7 |51+ )
4 R (7+47)°q
7" v, (Relv,)® qRw 2
= —j i 87 g°exp| —
TR Tiaer DO

where V; = (T, /m)"? R = major radius

T = Te / Ti g = safety factor



GAM density and potential in the Miller equilibrium
geometry
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COGENT predictions of GAM frequencies and damping
rates agree with analytic dispersion models

damping rate vs. safety factor

real frequency vs safety factor
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Comparison of GAM runs at varying phase space
resolution verifies fourth-order convergence

Grid Grid Estimated Richardson
refinement (radial x density extrapolated
level (N) poloidal x error density error (g)
vparallel x | conv. rate
mu) (r)
1 8 x 32X
32x8
2 16 x 64 X
64 x 16
3.8 (L1) 3.37x107 (L1)
3 31222 }(2,;32’( 3.8 (L2) | 6.03x107(L2)
4.1 (Max) | 1.95x 10* (Max)
4.2 (L1) 1.40x 108 (L1)
4 624526(554’( 41 (L2) | 2.95x107 (L2)
3.6 (Max) | 1.69x 10-° (Max)

di = ” ni+1 - ni ”x

n, = density at refinement level i

x =L1, L2, Max

Density Error (assuming n,, is exact)

—€— L1 norm
—+— L2 norm
—#— Max norm
— 4th order

Difference with n,

b

L
2
Grid refinement level N

ju—ry

Rate estimate: r = log(d,,,/d)) / log(2)

Error estimate: ¢ =log(d)) /(1 +2")



Our algorithm development supports the Edge Simulation Laboratory

(ESL) roadmap for a conti

nuum edge plasma simulation capability

\
Nonlinear, full-f phase space
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Algorithms with well

advection model
» Multiblock diverted geometry
9  Field line shear in 5D )

(Collision model )

* Target operator TBD

» Mapped FV discretization
applicable to Fokker-

understood and
controllable (phase)
spatial and temporal
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