AFSQ,'.?QSO

ORATORY

MPI at Exascale

Rajeev Thakur
Mathematics and Computer Science Division
Argonne National Laboratory

MPI on the Largest Machines Today

= Systems with the largest core counts in June 2010 Top500 list

Juelich BG/P 294,912 cores
Oak Ridge Cray XT5 224,162 cores
LLNL BG/L 212,992 cores
Argonne BG/P 163,840 cores

LLNL BG/P (Dawn) 147,456 cores
(All these systems run MPICH2-based MPI implementations)

= In acouple of years, we will have systems with more than a million cores

= For example, in 2012, the Sequoia machine at Livermore will be an IBM
Blue Gene/Q with 1,572,864 cores (~1.6 million cores)

Future Extreme Scale Platforms

= Hundreds of thousands of “nodes”

= Each node has large numbers of cores, including
— Regular CPUs and accelerators (e.g., GPUs)

Mgmt Compute /O Storage
Nodes Nodes Nodes Targets

Multiple Cores Per Node

Many amall cores

N O
N O
I
N I O
N
L eI e e

All Targe Cores

All small cores

L
BREN

Different Classes of Chips

Home
Games/Graphics

Business
Scientific

Memory Floating

Point Cores + 3D Stacked Memory

O] o e s

Scaling MPI to Exascale

= MPI already runs on the largest systems today at ~300,000 cores

= What would it take to scale MPI to exascale systems with millions of
cores?

= On exascale, MPl is likely to be used as part of a “hybrid programming”
model (MPI+X), much more so than it is today

— MPI being used to communicate between “address spaces”

— With some other “shared-memory” programming model (OpenMP, UPC,
CUDA, OpenCL) for programming within an address space

= How can MPI support efficient “hybrid” programming on exascale
systems?

Scaling MPI to Exascale

= Although the original designers of MPI were not thinking of exascale, MPI
was always intended and designed with scalability in mind. For example:

— A design goal was to enable implementations that maintain very little global
state per process

— Another design goal was to require very little memory management within
MPI (all memory for communication can be in user space)

— MPI defines many operations as collective (called by a group of processes),
which enables them to be implemented scalably and efficiently

= Nonetheless, some parts of the MPI specification may need to be fixed for
exascale

— Being addressed by the MPI Forum in MPI-3

Factors Affecting MPI Scalability

Performance and memory consumption

A nonscalable MPI function is one whose time or memory consumption
per process increase linearly (or worse) with the total number of
processes (all else being equal)

For example

— If memory consumption of MPI_Comm_dup increases linearly with the no.
of processes, it is not scalable

— If time taken by MPI_Comm_spawn increases linearly or more with the no.
of processes being spawned, it indicates a nonscalable implementation of
the function

Such examples need to be identified and fixed (in the specification and
in implementations)

The goal should be to use constructs that require only constant space
per process

Requirements of a message-passing library at
extreme scale

No O(nprocs) consumption of resources (memory, network
connections) per process

Resilient and fault tolerant

Efficient support for hybrid programming (multithreaded
communication)

Good performance over the entire range of message sizes and all
functions, not just latency and bandwidth benchmarks

Fewer performance surprises (in implementations)

These issues are being addressed by the MPI Forum for MPI-3 and by
MPI implementations

Scalability Issues in the MPI Specification

= Some functions take parameters that grow linearly with number of
processes

= E.g., irregular (or “v”) version of collectives such as MPI_Gatherv
= Extreme case: MPI_Alltoallw takes six such arrays
— On a million processes, that requires 24 MB on each process

= On low-frequency cores, even scanning through large arrays takes time
(see next slide)

= Solution: The MPI Forum is considering a proposal to define sparse,
neighborhood collectives that could be used instead of irregular
collectives

Zero-byte MPI_Alltoallv time on BG/P

Alltoallv Average Time

30000

25000 /

=@=Alltoallv Time /

5000 /

O-_.I
™

Average Time {us)
= []
o n =
o o o
S = S
S S S

.I.’I.I.I.I.I | I D D D D |
©) D 0 AV & A gk g koA g b
s@fo?‘.;v.fao,»smvcb.\ga.,;»@&

Number of Processes

&
%

" This is just the time to scan the parameter array to determine it is all
0 bytes. No communication performed.

10

Scalability Issues in the MPI Specification

Graph Topology

— In MPI 2.1 and earlier, requires the entire graph to be specified on each
process

— Already fixed in MPI 2.2 — new distributed graph topology functions

One-sided communication
— Synchronization functions turn out to be expensive
— Being addressed by RMA working group of MPI-3

Representation of process ranks

— Explicit representation of process ranks in some functions, such as
MPI_Group_incl and MPI_Group_excl

— Concise representations should be considered

11

Scalability Issues in the MPI Specification

All-to-all communication
— Not a scalable communication pattern

— Applications may need to consider newer algorithms that do not require
all-to-all

Fault tolerance
— Large component counts will result in frequent failures
— Greater resilience needed from all components of the software stack
— MPI can return error codes, but need more support than that
— Being addressed in the fault tolerance group of MPI-3

12

MPI Implementation Scalability

= MPIimplementations must pay attention to two aspects as the number
of processes is increased:

— memory consumption of any function, and

— performance of all collective functions
e Not just collective communication functions that are commonly optimized
e Also functions such as MPI_Init and MPI_Comm_split

13

Process Mappings

MPI communicators maintain mapping from ranks to processor ids
This mapping is often a table of O(nprocs) size in the communicator

Need to explore more memory-efficient mappings, at least for common
cases

More systematic approaches to compact representations of
permutations (research problem)

— See recent paper at HPDC 2010 by Alan Wagner et al. from the University
of British Columbia

14

Communicator Memory Consumption

= NEK5000 is a well-known fluid dynamics code developed by Paul Fischer
and colleagues at Argonne

= When they first tried to scale this code on the BG/P, it failed on as little as
8K processes because the MPI library ran out of communicator memory

= NEK5000 calls MPI_Comm_dup about 64 times (because it makes calls to
libraries)

= 64 is not a large number, and, in any case, MPI_Comm_dup should not
consume O(nprocs) memory (it doesn’t in MPICH?2)

= We ran an experiment to see what was going on...

15

Communicator Memory Consumption with original MPI on
BG/P

= Run MPI_Comm_dup in a loop until it fails. Vary the no. of processes

Maximum Number of Communicators
» 9000
% 3000 | —¢—¢—¢—¢—+—0o—0 0\
= 7000 \
£ 6000 \
£ 5000 \
© 4000 \
° 3000 N
2 2000
£ 1000 RN
< 0 Jh oV S
L BN b“‘&,ﬁob%i»&'\%b*%*x@%g&b&&*
Number of Processes

16

What was going on --- and the fix

The default MPI_Comm_dup in IBM’s MPI was allocating memory to store
process mapping info for optimizing future calls to collective
communication (Alltoall)

Allocated memory was growing linearly with system size

One could disable the memory allocation with an environment variable,
but that would also disable the collective optimizations

On further investigation we found that they really only needed one buffer
per thread instead of one buffer per new communicator

Since there are only four threads on the BG/P, we fixed the problem by
allocating a fixed buffer pool within MPI

We provided IBM with a patch that fixed the problem

17

Communicator Memory Consumption Fixed

Maximum Number of Communicators
g 9000
-§ 8000*. T e T e T e e B 5—8—8—8—8 888
' 7000 \
£ 6000 \
£ 5000 —— Default N
ﬁf 4000
S 3000 —— Buffer Pool \
S 2000 AN
€ 1000 AN
= 0 . o
“ B 0 A (X AD O D A AN
RN O S
Number of Processes

= NEK5000 code failed on BG/P at large scale because MPI ran out of
communicator memory. We fixed the problem by using a fixed buffer pool
within MPI and provided a patch to IBM.

18

MPI Memory Usage on BG/P after 32 calls to
MPl_Comm_dup

Percentage Memory Usage (32 dups)
25
: /
S 20 —&— Default
2 —— Buffer Pool /
g 15
(V]
3 Ve
g 10
("
>
[7,]
N 5
—3—8—8
0
4 8 16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K
Number of Processes

= Using a buffer pool enables all collective optimizations and takes up only a
small amount of memory

19

Scalability of MPI Init

eager versus lazy connection MPI_Init time

30 T T T 1 T T T T T T T T T T
eager connections —+—

lazy connections --——>----

29

7

(s)

10 . /\A’/ ’
o T e pCiE s A o R e s R G SRR]
0 L—-L“" 'K:E"x"‘i"*“‘!"*"I-‘x"X'—X“*—*"*"*—'*"'x"af

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256
size of MPI_COMM_WORLD

MPI_Init time

= Cluster with 8 cores per node. TCP/IP across nodes

= Setting up all connections at Init time is too expensive at large scale; must
be done on demand as needed

Scalable Algorithms for Collective
Communication

MPI implementations typically use
— O(lg p) algorithms for short messages (binomial tree)
— O(m) algorithms, where m=message size, for large messages

e E.g., bcast implemented as scatter + allgather

O(lg p) algorithms can still be used on a million processors for short
messages

However, O(m) algorithms for large messages may not scale, as the
message size in the allgather phase can get very small

— E.g., for a1l MB bcast on a million processes, the allgather phase involves 1
byte messages

Hybrid algorithms that do logarithmic bcast to a subset of nodes,
followed by scatter/allgather may be needed

Topology-aware pipelined algorithms may be needed
Use network hardware for broadcast/combine

21

Enabling Hybrid Programming

MPI is good at moving data between address spaces

Within an address space, MPI can interoperate with other “shared
memory” programming models

Useful on future machines that will have limited memory per core
(MPI + X) Model: MPI across address spaces, X within an address space

Examples:
— MPI + OpenMP
— MPI + UPC/CAF (here UPC/CAF address space could span multiple nodes)
— MPI + CUDA/OpenCL on GPU-accelerated systems

Precise thread-safety semantics of MPI enable such hybrid models

MPI Forum is exploring further enhancements to MPI to support
efficient hybrid programming

22

MPI-3 Hybrid Proposal on Endpoints

= |n MPI today, each process has one communication endpoint (rank in
MPI|_COMM_WORLD)

= Multiple threads communicate through that one endpoint, requiring the
implementation to do use locks etc., which are expensive

= This proposal (originally by Marc Snir) allows a process to have multiple
endpoints

= Threads within a process attach to different endpoints and communicate
through those endpoints as if they are separate ranks

= The MPI implementation can avoid using locks if each thread
communicates on a separate endpoint

23

Fewer Performance Surprises

= Sometimes we hear...

"T replaced

MPTI_Allreduce

by
MPI_Reduce + MPI_Bcast

And got better results. Should not happen..

24

Or...

"T replaced

MPI_Send(n)

by
MPI_Send(n/k) + MPI_Send(n/k) + ... + MPI_Send(n/k)

25

Or...

"I replaced

MPI_Bcast(n)

by
<this homemade algorithm with MPI_Send(n) and MPI_Recv(n)>

And got better restlts.” Should ot happen..

26

Self-Consistent MPI Performance Guidelines

Although MPI is portable, there is a lot of performance variability
among MPI implementations

— Lots of performance surprises

We (Traff, Gropp, Thakur) have defined some common-sense
performance guidelines for MPI

— “Self-Consistent MPI Performance Guidelines”, IEEE TPDS, 2010

Tools could be written to check for these requirements

27

General Principles

If there is an obvious way - intended by the MPI standard - of
Improving communication time,

=

a sound MPT implementation should do so!

- And not the user!

28

Sample Requirements

Subdividing messages into multiple messages should not reduce the

communication time
— MPI_Send(1500 bytes) <= MPI_Send(750 bytes) + MPI_Send(750 bytes)

Replacing an MPI function with a similar function that provides
additional semantic guarantees should not reduce the communication
time

— MPI_Send <= MPI|_Ssend

Replacing a specific MPI operation by a more general operation by
which the same functionality can be expressed should not reduce
communication time

— MPI_Scatter <= MPI_Bcast

29

Example: Broadcast vs Scatter

Broadcast

Rank O Rank 1 Rank 2 Rank 3
I R I e

Scatter
Rank O Rank 1 Rank 2 Rank 3
B s [] []

= Scatter should be faster (or at least no slower) than broadcast

30

MPI_Bcast vs MPI_Scatter

45

40 |

35 r

a0

{microsec.)

Time

15

10

23

20

MPI-Bcast
MPI-Scatter

64 processes

aun 1o 1500 2o 2300 Sug 3500 qun 4500
Size (bytes)

= On BG/P, scatter is 3-4 times slower than broadcast

" Broadcast has been optimized using hardware, scatter hasn’t

31

Eager vs Rendezvous Messages

CommPa for NP HProcessor =00,0,0- Ina =4, 4, &, 1> meshl bpe HocHng

Hrmss (L]

Time (microsec)

1] 1 | 1 | 1 1 1 |
o S0 1000 1500 ot i 2500 30 500 000 3500

Bl by

Size (bytes)

= Large jump in time when message delivery switches from eager to
rendezvous

= Sending 2 750-byte messages is faster than 1 1500-byte message

32

Recent Efforts of the MPI Forum

MPI| Standard Timeline

= MPI-1(1994)

— Basic point-to-point communication, collectives, datatypes, etc
= MPI-2(1997)

— Added parallel /0, RMA, dynamic processes, C++ bindings, etc

= - Stable for 10 years ----

= MPI-2.1(2008)
— Minor clarifications and bug fixes to MPI-2
= MPI-2.2 (2009)
— Today’s official standard
— Small updates and additions to MPI 2.1. Backward compatible
= MPI-3 (in progress, expected late 2011)
— Major new features and additions to extend MPI to exascale
— Organized into several working groups

34

\
New Features being considered in MPI-3

= Note: All these are still under discussion in the Forum and not final

= Support for hybrid programming (Lead: Pavan Balaji, Argonne)
— Extend MPI to allow multiple communication endpoints per process
— Helper threads: application sharing threads with the implementation

= Improved RMA (Leads: Bill Gropp, UIUC, and Rajeev Thakur, Argonne)
— Fix the limitations of MPI-2 RMA
— New compare-and-swap, fetch-and-add functions
— Collective window memory allocation
— Test for completion of individual operations
— Others...

35

\
New Features being considered in MPI-3

= New collectives (Lead: Torsten Hoefler, UIUC)
— Nonblocking collectives already voted in (MPI_lbcast, MPI_Ireduce, etc)

— Sparse, neighborhood collectives being considered as alternatives to
irregular collectives that take vector arguments

= Fault tolerance (Lead: Rich Graham, Oak Ridge)
— Detecting when a process has failed; agreeing that a process has failed

— Rebuilding communicator when a process fails or allowing it to continue in
a degraded state

— Timeouts for dynamic processes (connect-accept)
— Piggybacking messages to enable application-level fault tolerance

36

New Features being considered in MPI-3

= Fortran 2008 bindings (Lead: Craig Rasmussen, LANL)
— Full and better quality argument checking with individual handles
— Support for choice arguments, similar to (void *) in C
— Passing array subsections to nonblocking functions
— Many other issues

= Better support for Tools (Lead: Martin Schulz, LLNL)

— MPIT performance interface to query performance information internal to an
implementation

— Standardizing an interface for parallel debuggers

37

Arggmgo

ORATORY

What are we doing in MPICH2

7%, U.S. DEPARTMENT OF
{¢) ENERGY

Goals of the MPICH2 project

= Be the MPI implementation of choice for the highest-end parallel
machines

— 7 of the top 10 machines in the June 2010 Top500 list use MPICH2-based
implementations

= Carry out the research and development needed to scale MPI to exascale
— Optimizations to reduce memory consumption
— Fault tolerance
— Efficient multithreaded support for hybrid programming
— Performance scalability

= Work with the MPI Forum on standardization and early prototyping of
new features

39

MPICHZ2 collaboration with vendors

= Enable vendors to provide high-performance MPI implementations on the
leading machines of the future

= Collaboration with IBM on MPI for the Blue Gene/Q
— Aggressive multithreaded optimizations for high concurrent message rates
— Recent publications in Cluster 2010 and EuroMPI 2010

= Collaboration with Cray for MPI on their next-generation interconnect
(Gemini)

= Collaboration with UIUC on MPICH2 over LAPI for Blue Waters

= Continued collaboration with Intel, Microsoft, and Ohio State (MVAPICH)

40

Conclusions

= MPI has succeeded because

— features are orthogonal (complexity is the product of the number of
features, not routines)

— complex programs are no harder than easy ones
— open process for defining MPI led to a solid design

— programmer can control memory motion and program for locality (critical
in high-performance computing)

— precise thread-safety specification has enabled hybrid programming

= MPIis ready for scaling to extreme scale systems with millions of cores
barring a few issues that can be (and are being) fixed by the MPI Forum
and by MPIl implementations

41

