
Steve Scott
Cray CTO

SciDAC’10
Chattanooga, TN
July 14, 2010

SciDAC 2010 1Copyright 2010 Cray Inc.



Exaflop
System

Not constant cost,
size or power

SciDAC 2010 2Copyright 2010 Cray Inc.



Power

• Traditional voltage

scaling is over

• Power now a major

design constraint 

• Cost of ownership

• Driving significant

changes in architecture

Concurrency

• A billion operations per

clock

• Billions of refs in flight

at all times

• Will require huge

problems

• Need to exploit all

available parallelism

Programming 

Difficulty

• Concurrency and new

micro-architectures will

significantly complicate

software

• Need to hide this

complexity from the users

Resiliency

• Many more components

• Components getting less

reliable

• Checkpoint bandwidth

not scaling

SciDAC 2010 3Copyright 2010 Cray Inc.



� The most power-efficient standard processors today can 

achieve ~400 MF/watt on HPL
� This corresponds to ~2.5 MW per Petaflop

� Or about 2.5 GW for an Exaflop!

� DARPA UHPC goal: 50 GF/watt in ~8 years
� Corresponds to 20 MW for an Exaflop 

� Need a factor of over 100 improvement

SciDAC 2010 4Copyright 2010 Cray Inc.



� With more aggressive voltage scaling than assumed in ITRS roadmap, can get power of 

FPUs for an Exaflop down to ~5MW in 22nm IC technology

� FPUs are just one of many consumers of power

SciDAC 2010 5Copyright 2010 Cray Inc.



This one takes over 3x the energy!

Performing a 64-bit floating-point FMA:

893,500.288914668
x 43.90230564772498

=  39,226,722.78026233027699

××××

+ 2.02789331400154
=  39,226,724.80815564

Or moving the three 64-bit 
operands 20 mm across the die:

And loading the data from off chip takes > 10x more yet

Flops are cheap, communication is expensive.
Exploiting data locality is critical for energy efficiency.

SciDAC 2010 6Copyright 2010 Cray Inc.



1. Power and cool the system efficiently
� PUE (ratio of facility power to machine power) should be as close as 

possible to 1

� Power delivery efficiency inside the cabinet is important too

� Spend most of the energy on the computer itself, not on power delivery 

and cooling infrastructure

2. Architect system (processors, memory, network) to maximize 

power efficiency
� Spend most of the computer’s power on actual computation

� Minimize energy spent on data movement and control overhead

3. Sustain a high fraction of peak performance
� Eliminate bottlenecks; don’t leave performance on the floor

� Sustained flops/watt is what matters, not peak flops/watt

SciDAC 2010 7Copyright 2010 Cray Inc.



18 fins

42 fins

37 fins

24 fins

Air 
Flow

R134a pipingR134a piping

Exit EvaporatorsExit Evaporators

Inlet 

Evaporator

Inlet 

Evaporator

Gets PUE down to ~1.25 
through reduced need for chillers and CRACs

(more or less depending on climate)

SciDAC 2010 8Copyright 2010 Cray Inc.



Cray is lowering PUE to < 1.2 in Cascade (2012).

Working with Microsoft on approaches for new data 
centers to drive PUE < 1.05

Not much more to be gained…

SciDAC 2010 9Copyright 2010 Cray Inc.



� Multi-core architectures are a good first response to power issues

� Performance through parallelism, not frequency

� Exploit on-chip locality

� However, conventional processor architectures are optimized for single thread 

performance rather than energy efficiency

� Fast clock rate with latency(performance)-optimized memory structures

� Wide superscalar instruction issue with dynamic conflict detection

� Heavy use of speculative execution and replay traps

� Large structures supporting various types of predictions

� Relatively little energy spent on actual ALU operations

� Could be much more energy efficient with multiple simple processors, 

exploiting vector/SIMD parallelism and a slower clock rate

� But serial thread performance is really important (Amdahl’s Law):

� If you get great parallel speedup, but hurt serial performance, then you end up with 

a niche processor (less generally applicable, harder to program)

SciDAC 2010 10Copyright 2010 Cray Inc.



� To achieve scale and sustained performance per {$,watt}, must adopt:

� …a heterogeneous node architecture

� fast serial threads coupled to many efficient parallel threads

� …a deep, explicitly managed memory hierarchy

� to better exploit locality, improve predictability, and reduce overhead

� …a microarchitecture to exploit parallelism at all levels of a code

� distributed memory, shared memory, vector/SIMD, multithreaded

� (related to the “concurrency” challenge—leave no parallelism untapped)

� This sounds a lot like a GPU accelerators…

� NVIDIA FermiTM has made GPUs feasible for HPC
� Robust error protection and strong DP FP, plus programming enhancements

� Expect GPUs to make continued and significant inroads into HPC
� Compelling technical reasons + high volume market

� Programmability remains primary barrier to adoption
� Cray is focusing on compilers, tools and libraries to make GPUs easier to use

� There are also some structural issues that limit applicability of current designs…

� Technical direction for Exascale:
� Unified node with “CPU” and “accelerator” on chip sharing common memory 

� Very interesting processor roadmaps coming from Intel, AMD and NVIDIA….

SciDAC 2010 11Copyright 2010 Cray Inc.



� Programming model and tools will be critical to achieving practical Exaflops

� Need a single programming model that is portable across machine types, 

and also forward scalable in time

� Portable expression of heterogeneity and multi-level parallelism

� Programming model and optimization should not be significantly difference for 

“accelerated” nodes and multi-core x86 processors

� Need to shield user from the complexity of dealing with heterogeneity

� High level language with good complier and runtime support

� Optimized libraries

� Directive-based approach makes sense

� A Cray employee is co-chairing OpenMP group on accelerators

� Plan to have “accelerator” directives in 4.0

� Identifying the parallelism is the hard part, not the mechanics

� Provide tools to sophisticated users to make this easier

� Compiler and runtime can map the parallelism onto the hardware

SciDAC 2010 12Copyright 2010 Cray Inc.



� Cray pioneered the use of high radix routers in HPC
� Becoming optimal due to technology shift

� Router pin bandwidth growing vs. packet length
� Reduces serialization latency of narrow links

� Reduced network diameter (number of hops)
� Lowers network latency
� Lowers network cost

� But higher radix network require longer cable lengths
� Limits electrical signaling speed

� Advent of cost-effective optics allows longer cable lengths
� Optics are now cost effective above ~7 meters (and dropping)
� Cost, bandwidth and power are relatively insensitive to cable length
� Opens the door to some innovative new topologies

� Future Cray systems will be based on hybrid, electrical-optical networks
� Cost-effective, scalable global bandwidth
� Very low network diameter (small number of hops) ⇒ very energy efficient

� Lower power electrical and optical links are critically important
� Optics directly off chip package provide potential for much higher bandwidth

64 port YARC router
in Cray X2

SciDAC 2010 13Copyright 2010 Cray Inc.



SciDAC 2010 14Copyright 2010 Cray Inc.



� A plausible first peak exaflop system:

� 2017, 16nm IC technology

� 8 TF per socket  ⇒ 125K sockets

� 250 watts/socket system power ⇒ 31 MW

� 384 sockets/cabinet  ⇒ 325 cabinets ⇒ 10,000 sq. ft.

� Node memory

� Bandwidth/flop to main memory will be significantly lower than today

� New layer in-between LLC and main memory

� Tightly-coupled, stacked memory for very high bandwidth and low pJ/bit

� Network 

� All optics (transceivers integrated in package)

� High radix routers with very low network diameter 

� Flattened butterfly, dragonfly, etc.

� Processor architecture

� Heterogeneous (most of the flops will be in “accelerators”)

� Necessary to get both good performance and energy efficiency

SciDAC 2010 15Copyright 2010 Cray Inc.



� Building a physical system of 10K sq. ft., 31 MW and 325 cabinets is quite 

feasible

� About 3x of where we are today in HPC

� Much smaller than existing cloud data centers

� Optics makes the cabling manageable

� Scaling the OS doesn’t particularly concern me either

� One instance of the OS per “node” (1-4 sockets)

� Do not need to run the OS on every “core”

� OS runs on the serial processors

� User-level (or partially privileged) runtime on the accelerator

� OS instances on the compute nodes are very lightweight/low noise

� Cray has been very successful in wringing out OS jitter at scale

� Core specialization can help further

� Application scaling and resiliency are another matter…

SciDAC 2010 16Copyright 2010 Cray Inc.



� Yesterday’s approach was to make the underlying system 

reliable through good engineering and redundancy

� This is simply not going to work at the Exascale

� Component counts going way up

� Underlying components getting less reliable

� Of course, we’ll still use redundancy extensively

� Processors, networks, memory, etc.

� Most important thing to focus on in hardware is avoiding 

silent data corruption

SciDAC 2010 17Copyright 2010 Cray Inc.



Objective: Analyze the current problem in reliable systems and suggest new 

avenues for research in resilient systems at large scale.

Estimate 20% of today’s computing capacity in large HPC 

systems is wasted due to failures and recoveries
� Will get worse as system size continues to scale

Example:
� 1000 FIT processor has an expected lifetime of > 100 

years
� 125,000 processors ⇒ three failures per day
� The market doesn’t need to solve this problem

Can make system resilient
� It’s the applications that are hard

Checkpoint/Restart is a temporary solution
� MTBF is shrinking due to scale and technology
� Checkpoint times growing due to larger memory
� As MTBF approaches checkpoint time, will no longer 

work!

Available at  www.darpa.mil/ipto/personnel/docs/ExaScale_Study_Initial.pdf

SciDAC 2010 18Copyright 2010 Cray Inc.



� Stopgap measures will hold us for a while

� Checkpoint/Restart with Flash or similar non-volatile memory

� Resilient communication protocols, better ECC,…

� We need community engagement and collaboration

� Need better understanding of classes of apps and resiliency attributes

� Need standards for applications

� How to specify variable resiliency requirements (e.g.: reliability critical sections)

� APIs for the system to provide failure information to the application

� APIs for the applications to specify actions to the system (e.g.: restart this piece)

� May be potential for (semi-)automatic application resiliency

� Use compiler techniques to decompose applications into sufficiently constrained 

work items

� Some such decomposition already occurs as part of parallelization

� Expect that user directives will be needed to make this work well enough

� Use runtime techniques to reliably execute these work items

� Work distribution is already done by some runtimes

� Need to add reliability and encapsulation aspects

� In-memory checkpoints and transactional techniques may apply

SciDAC 2010 19Copyright 2010 Cray Inc.



• Static finite element analysis

1  GF – 1988: Cray Y-MP; 8 Processors

• Modeling of metallic magnet atoms

1 TF – 1998: Cray T3E; 1,024 Processors

• Superconductive materials

1 PF – 2008: Cray XT5; 150,000 Processors

1 EF -- ~2018: Cray ____; ~10,000,000 Processors 

SciDAC 2010 20Copyright 2010 Cray Inc.



21Copyright 2010 Cray Inc.


