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Exaflop
System

Not constant cost,
size or power
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Power

• Traditional voltage

scaling is over

• Power now a major

design constraint 

• Cost of ownership

• Driving significant

changes in architecture

Concurrency

• A billion operations per

clock

• Billions of refs in flight

at all times

• Will require huge

problems

• Need to exploit all

available parallelism

Programming 

Difficulty

• Concurrency and new

micro-architectures will

significantly complicate

software

• Need to hide this

complexity from the users

Resiliency

• Many more components

• Components getting less

reliable

• Checkpoint bandwidth

not scaling
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� The most power-efficient standard processors today can 

achieve ~400 MF/watt on HPL
� This corresponds to ~2.5 MW per Petaflop

� Or about 2.5 GW for an Exaflop!

� DARPA UHPC goal: 50 GF/watt in ~8 years
� Corresponds to 20 MW for an Exaflop 

� Need a factor of over 100 improvement
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� With more aggressive voltage scaling than assumed in ITRS roadmap, can get power of 

FPUs for an Exaflop down to ~5MW in 22nm IC technology

� FPUs are just one of many consumers of power
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This one takes over 3x the energy!

Performing a 64-bit floating-point FMA:

893,500.288914668
x 43.90230564772498

=  39,226,722.78026233027699

××××

+ 2.02789331400154
=  39,226,724.80815564

Or moving the three 64-bit 
operands 20 mm across the die:

And loading the data from off chip takes > 10x more yet

Flops are cheap, communication is expensive.
Exploiting data locality is critical for energy efficiency.
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1. Power and cool the system efficiently
� PUE (ratio of facility power to machine power) should be as close as 

possible to 1

� Power delivery efficiency inside the cabinet is important too

� Spend most of the energy on the computer itself, not on power delivery 

and cooling infrastructure

2. Architect system (processors, memory, network) to maximize 

power efficiency
� Spend most of the computer’s power on actual computation

� Minimize energy spent on data movement and control overhead

3. Sustain a high fraction of peak performance
� Eliminate bottlenecks; don’t leave performance on the floor

� Sustained flops/watt is what matters, not peak flops/watt
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18 fins

42 fins

37 fins

24 fins

Air 
Flow

R134a pipingR134a piping

Exit EvaporatorsExit Evaporators

Inlet 

Evaporator

Inlet 

Evaporator

Gets PUE down to ~1.25 
through reduced need for chillers and CRACs

(more or less depending on climate)
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Cray is lowering PUE to < 1.2 in Cascade (2012).

Working with Microsoft on approaches for new data 
centers to drive PUE < 1.05

Not much more to be gained…
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� Multi-core architectures are a good first response to power issues

� Performance through parallelism, not frequency

� Exploit on-chip locality

� However, conventional processor architectures are optimized for single thread 

performance rather than energy efficiency

� Fast clock rate with latency(performance)-optimized memory structures

� Wide superscalar instruction issue with dynamic conflict detection

� Heavy use of speculative execution and replay traps

� Large structures supporting various types of predictions

� Relatively little energy spent on actual ALU operations

� Could be much more energy efficient with multiple simple processors, 

exploiting vector/SIMD parallelism and a slower clock rate

� But serial thread performance is really important (Amdahl’s Law):

� If you get great parallel speedup, but hurt serial performance, then you end up with 

a niche processor (less generally applicable, harder to program)
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� To achieve scale and sustained performance per {$,watt}, must adopt:

� …a heterogeneous node architecture

� fast serial threads coupled to many efficient parallel threads

� …a deep, explicitly managed memory hierarchy

� to better exploit locality, improve predictability, and reduce overhead

� …a microarchitecture to exploit parallelism at all levels of a code

� distributed memory, shared memory, vector/SIMD, multithreaded

� (related to the “concurrency” challenge—leave no parallelism untapped)

� This sounds a lot like a GPU accelerators…

� NVIDIA FermiTM has made GPUs feasible for HPC
� Robust error protection and strong DP FP, plus programming enhancements

� Expect GPUs to make continued and significant inroads into HPC
� Compelling technical reasons + high volume market

� Programmability remains primary barrier to adoption
� Cray is focusing on compilers, tools and libraries to make GPUs easier to use

� There are also some structural issues that limit applicability of current designs…

� Technical direction for Exascale:
� Unified node with “CPU” and “accelerator” on chip sharing common memory 

� Very interesting processor roadmaps coming from Intel, AMD and NVIDIA….
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� Programming model and tools will be critical to achieving practical Exaflops

� Need a single programming model that is portable across machine types, 

and also forward scalable in time

� Portable expression of heterogeneity and multi-level parallelism

� Programming model and optimization should not be significantly difference for 

“accelerated” nodes and multi-core x86 processors

� Need to shield user from the complexity of dealing with heterogeneity

� High level language with good complier and runtime support

� Optimized libraries

� Directive-based approach makes sense

� A Cray employee is co-chairing OpenMP group on accelerators

� Plan to have “accelerator” directives in 4.0

� Identifying the parallelism is the hard part, not the mechanics

� Provide tools to sophisticated users to make this easier

� Compiler and runtime can map the parallelism onto the hardware
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� Cray pioneered the use of high radix routers in HPC
� Becoming optimal due to technology shift

� Router pin bandwidth growing vs. packet length
� Reduces serialization latency of narrow links

� Reduced network diameter (number of hops)
� Lowers network latency
� Lowers network cost

� But higher radix network require longer cable lengths
� Limits electrical signaling speed

� Advent of cost-effective optics allows longer cable lengths
� Optics are now cost effective above ~7 meters (and dropping)
� Cost, bandwidth and power are relatively insensitive to cable length
� Opens the door to some innovative new topologies

� Future Cray systems will be based on hybrid, electrical-optical networks
� Cost-effective, scalable global bandwidth
� Very low network diameter (small number of hops) ⇒ very energy efficient

� Lower power electrical and optical links are critically important
� Optics directly off chip package provide potential for much higher bandwidth

64 port YARC router
in Cray X2
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� A plausible first peak exaflop system:

� 2017, 16nm IC technology

� 8 TF per socket  ⇒ 125K sockets

� 250 watts/socket system power ⇒ 31 MW

� 384 sockets/cabinet  ⇒ 325 cabinets ⇒ 10,000 sq. ft.

� Node memory

� Bandwidth/flop to main memory will be significantly lower than today

� New layer in-between LLC and main memory

� Tightly-coupled, stacked memory for very high bandwidth and low pJ/bit

� Network 

� All optics (transceivers integrated in package)

� High radix routers with very low network diameter 

� Flattened butterfly, dragonfly, etc.

� Processor architecture

� Heterogeneous (most of the flops will be in “accelerators”)

� Necessary to get both good performance and energy efficiency
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� Building a physical system of 10K sq. ft., 31 MW and 325 cabinets is quite 

feasible

� About 3x of where we are today in HPC

� Much smaller than existing cloud data centers

� Optics makes the cabling manageable

� Scaling the OS doesn’t particularly concern me either

� One instance of the OS per “node” (1-4 sockets)

� Do not need to run the OS on every “core”

� OS runs on the serial processors

� User-level (or partially privileged) runtime on the accelerator

� OS instances on the compute nodes are very lightweight/low noise

� Cray has been very successful in wringing out OS jitter at scale

� Core specialization can help further

� Application scaling and resiliency are another matter…
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� Yesterday’s approach was to make the underlying system 

reliable through good engineering and redundancy

� This is simply not going to work at the Exascale

� Component counts going way up

� Underlying components getting less reliable

� Of course, we’ll still use redundancy extensively

� Processors, networks, memory, etc.

� Most important thing to focus on in hardware is avoiding 

silent data corruption
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Objective: Analyze the current problem in reliable systems and suggest new 

avenues for research in resilient systems at large scale.

Estimate 20% of today’s computing capacity in large HPC 

systems is wasted due to failures and recoveries
� Will get worse as system size continues to scale

Example:
� 1000 FIT processor has an expected lifetime of > 100 

years
� 125,000 processors ⇒ three failures per day
� The market doesn’t need to solve this problem

Can make system resilient
� It’s the applications that are hard

Checkpoint/Restart is a temporary solution
� MTBF is shrinking due to scale and technology
� Checkpoint times growing due to larger memory
� As MTBF approaches checkpoint time, will no longer 

work!

Available at  www.darpa.mil/ipto/personnel/docs/ExaScale_Study_Initial.pdf
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� Stopgap measures will hold us for a while

� Checkpoint/Restart with Flash or similar non-volatile memory

� Resilient communication protocols, better ECC,…

� We need community engagement and collaboration

� Need better understanding of classes of apps and resiliency attributes

� Need standards for applications

� How to specify variable resiliency requirements (e.g.: reliability critical sections)

� APIs for the system to provide failure information to the application

� APIs for the applications to specify actions to the system (e.g.: restart this piece)

� May be potential for (semi-)automatic application resiliency

� Use compiler techniques to decompose applications into sufficiently constrained 

work items

� Some such decomposition already occurs as part of parallelization

� Expect that user directives will be needed to make this work well enough

� Use runtime techniques to reliably execute these work items

� Work distribution is already done by some runtimes

� Need to add reliability and encapsulation aspects

� In-memory checkpoints and transactional techniques may apply
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• Static finite element analysis

1  GF – 1988: Cray Y-MP; 8 Processors

• Modeling of metallic magnet atoms

1 TF – 1998: Cray T3E; 1,024 Processors

• Superconductive materials

1 PF – 2008: Cray XT5; 150,000 Processors

1 EF -- ~2018: Cray ____; ~10,000,000 Processors 
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