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Multiscale in Space:  All physics must model the 
massive heterogeneous structure

Reactor Vessel Radial Slice Single Lattice

0 
cm

et
er

s 20

15
 m

e

m
m

8 meters

5 
m

Single Pincell

Reactor
Core

4 Managed by UT-Battelle
for the U.S. Department of Energy Denovo Parallel SN

Single Pincell



Current State-of-the-Art in Reactor Neutronics

0/1 D transport

pin cell

• 0/1-D transport
• High energy fidelity (102-5 unknowns)
• Approximate state and BCs

• 2-D transport
• Moderate energy fidelity (7-102 groups)

lattice cell • Approximate state and BCs
• Depletion with spectral corrections
• Space-energy homogenization

• 3-D diffusion
L   fid lit  (2 4 )

General Electric ESBWR

core
• Low energy fidelity (2-4 groups)
• Homogeneous lattice cells
• Heterogeneous flux reconstruction
• Coupled physics
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Science Drivers for Neutronics

• Spatial resolution
– To resolve the geometry

• 109‐12 unknowns

• Crud and distortion
• Control rod insertion• 109 12 unknowns

• mm3 cells in a m3 vessel 

– Depletion makes it harder

E l ti

• Control rod insertion
• Ab initio design
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• Energy resolution

– To resolve resonances
• 104‐6 unknowns
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• Done in 0D or 1D today

• Angular resolution
– To resolve streaming
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• 102‐4 unknowns

– Space‐energy resolution 
make it harder
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Denovo Capabilities

• State of the art transport methods
– 3D, non-uniform, regular grid SN
– Multigroup energy, anisotropic Pn

• Modern, Innovative, High-Performance 
Solvers

– Within-group solversu t g oup e e gy, a sot op c
scattering

– Forward/Adjoint
– Fixed-source/k-eigenvalue

• Krylov (GMRES, BiCGStab) and source iteration
• DSA preconditioning (SuperLU/ML-

preconditioned CG/PCG)

– Multigroup solvers
– 6 spatial discretization algorithms

• Linear and Trilinear discontinuous 
FE, step-characteristics, theta-
weighted diamond, weighted 

g p
• Transport Two-Grid upscatter acceleration of 

Gauss-Seidel
• Krylov (GMRES, BiCGtab)

– Eigenvalue solversg , g
diamond + flux-fixup

– Parallel first-collision
• Analytic ray-tracing (DR)

Eigenvalue solvers
• Power iteration (with rebalance)

– CMFD in testing phase

• Krylov (Arnoldi)
• Shifted inverse iteration in development• Monte Carlo (DR and DD)

– Multiple quadratures
• Level-symmetric

G li d L d  P d t

• Shifted-inverse iteration in development

Power distribution in a BWR assembly
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• Generalized Legendre Product
• Galerkin

Power distribution in a BWR assembly



Denovo Capabilities

• Parallel Algorithms
– Koch-Baker-Alcouffe (KBA) wavefront

decomposition

• Advanced visualization, run-time, and 
development environment

– 3 front-ends (HPC, SCALE, Python-
bi di )– Domain-replicated (DR) and domain-

decomposed first-collision solvers
– Multilevel energy decomposition in 

development

bindings)
– Direct connection to SCALE geometry 

and data
– Direct connection to MCNP input de e op e t

– Parallel I/O built on SILO/HDF5
Direct connection to MCNP input 
through ADVANTG

– HDF5 output directly interfaced with 
VisIt
B ilt i  it t ti  d i  

> 5M CPU hours on Jaguar with 2 bugs
– Built-in unit-testing and regression 

harness with DBC
– Emacs-based code-development 

environment
– Support for multiple external vendors

• GSL, BLAS/LAPACK, TRILINOS (required)
• BRLCAD, SUPERLU/METIS, SILO/HDF5 

(optional)

2010 INCITE Award
Uncertainty Quantification for Three 
Dimensional Reactor Assembly 
Simulations, 8 MCPU‐HOURS

l d
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• MPI (toggle for parallel/serial builds)
• SPRNG (required for MC module)
• PAPI (optional instrumentation)

2010 ASCR Joule Code
2009‐2011 2 ORNL LDRDs



Discrete Ordinates Methods

• We solve the first-order form of the transport equation:
Ei l f  f  lti l i  di  (fi i )– Eigenvalue form for multiplying media (fission):

– Fixed source form:
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Application Areas

Reactor Analysis
ITER component performance/shielding

eac o a ys s

National defense/National defense/
Urban modeling

10 Managed by UT-Battelle
for the U.S. Department of Energy Denovo Parallel SN

Facility shielding/dosimetry



Discrete Ordinates Methods

• The SN method is a collocation method in angle.
– Energy is discretized in groups.gy g p
– Scattering is expanded in Spherical Harmonics.
– Multiple spatial discretizations are used (DGFEM, 

Ch t i ti  C ll B l )Characteristics, Cell-Balance).

• Dimensionality of operators:
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Degrees of Freedom

• Total number of unknowns in solve:

• An ideal (conservative) estimate.
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Traditional SN Solution Methods

• Traditional SN solutions are divided into outer iterations 
over energy and inner iterations over space angleover energy and inner iterations over space-angle.

• Generally, accelerated Gauss-Seidel or SOR is used for 
outer iterationsouter iterations.

• Eigenvalue forms of the equation are solved using 
Power IterationPower Iteration

• In Denovo we are motivated to look at more advanced 
solverssolvers
– Improved robustness
– Improved efficiency
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– Improved parallelism



Krylov Methods

• Krylov methods are more robust than stationary solvers
U if l  t bl  ( diti d d diti d)– Uniformly stable (preconditioned and unpreconditioned)

• Can be implemented matrix-free
• More efficient

– Source iteration spectral radius

– Gauss-Seidel spectral radius

Th  i   li  i  K l th d• There is no coupling in Krylov methods
– Gauss-Seidel imposes coupling between rows in the matrix

Krylov has no coupling; opportunities for enhanced 
14 Managed by UT-Battelle
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– Krylov has no coupling; opportunities for enhanced 
parallelism



Physics Dictates Convergence
The Gauss Seidel spectral radius for uniform graphite is 0 9812 = slow • The Gauss-Seidel spectral radius for uniform graphite is 0.9812 = slow 
convergence

• Systems that are block-dense in energy are sparse in energy-space-angle

• Ideal candidates for Krylov methods

Iron-D2O-Graphite block energy S matrix Iron-D2O-Graphite energy-space-angle S matrix
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Multigroup Transport Problem

• Operate on the SN equations by T=DL-1

• Using Gauss-Seidel requires the solution of G within-
group equations (using Krylov iteration) in each GS 
iteration
Alt ti l  th  f ll  t   b  l d b  • Alternatively, the full energy system can be solved by 
Krylov iteration
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Eigenvalue Problem

• The eigenvalue problem has the following form

• Expressed in standard form

Energy-dependent

• The traditional way to solve this problem is with Power 
Iteration

Energy-indepedent
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Iteration



Advanced Eigenvalue Solvers

• We can use Krylov (Arnoldi) iteration to solve the 
eigenvalue problem more efficientlyeigenvalue problem more efficiently

Matrix-vector multiply and sweep

Multigroup fixed-source solve

• Shifted-inverse iteration (Raleigh-Quotient Iteration) is 
also being developed (using Krylov to solve the shifted 

lti bl  i  h i l it ti )multigroup problem in each eigenvalue iteration)
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Solver Taxonomy Eigenvalue Solvers

Power iteration
Arnoldi

Shifted‐inverse

Multigroup Solvers

The innermost part of each solver are 
transport sweeps

Gauss‐Seidel
Residual Krylov

Gauss‐Seidel + Krylov

Within‐group Solvers

Krylov
Residual Krylov

“It’s turtles all the way down…”
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Source iteration



Advanced Solvers
• Regular GMRES performs very well without acceleration Regular GMRES performs very well without acceleration 

for most problems

• Transport two grid (TG) acceleration of upscatter is 
highly efficient and stable

• Preconditioning Krylov with DSA is unconditionally 
stable

• Excellent results for high scattering and/or tight 
convergence

Method Acc. SN GS Iterations Normalized
Time

Gauss‐Seidel ‐ 175 1.000

Transport TG 8 15 0.113
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Transport TG 4 14 0.097

Transport TG 2 13 0.086



Parallel Performance 6 angle pipeline (S4; M = 3)

Angular PipeliningAngular Pipelining
• Angles in ± z directions are pipelined
• Results in 2×M pipelined angles per octant
• Quadrants are ordered to reduce latencyQuadrants are ordered to reduce latency
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KBA Reality

KBA does not achieve close to 
the predicted maximum

• Communication latency dominates as the block size becomes small
• Using a larger block size helps achieve the predicted efficency but,

– Maximum achievable efficiency is lower
– Places a fundamental limit on the number of cores that can be used for any 

i  bl

22 Managed by UT-Battelle
for the U.S. Department of Energy Denovo Parallel SN

given problem



Efficiency vs Block Size
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Overcoming Wavefront Challenge

• This behavior is systemic in any wavefront-type 
problemproblem
– Hyberbolic aspect of transport operator

• We need to exploit parallelism beyond space angle• We need to exploit parallelism beyond space-angle
– Energy
– TimeTime

• Amortize the inefficiency in KBA while still retaining 
direct inversion of the transport operatorp p
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Multilevel Energy Decomposition

The use of Krylov methods to solve 
the multigroup equations effectively 
deco ples energdecouples energy
– Each energy-group SN equation can be 

swept independently
– Efficiency is better than Gauss-SeidelEfficiency is better than Gauss Seidel
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Multilevel Summary

• Energy decomposed into sets.
E h t t i  bl k  tit ti  th  ti  ti l • Each set contains blocks constituting the entire spatial 
mesh.

• The total number of domains is• The total number of domains is

• KBA is performed for each group in a set across all of • KBA is performed for each group in a set across all of 
the blocks.
– Not required to scale beyond O(1000) cores.

• Scaling in energy across sets should be linear.
• Allows scaling to O(100K) cores and enhanced 
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g ( )
parallelism on accelerators.



Whole Core Reactor Problem

PWR-900 Whole Core Problem
• 2 and 44-group, homogenized 

f l i
17×17 assembly

fuel pins
• 2×2 spatial discretization per 

fuel pinfuel pin
• 17×17 fuel pins per assembly
• 289 assemblies (157 fuel  132 • 289 assemblies (157 fuel, 132 

reflector) – high, med, low 
enrichments

• Space-angle unknowns:
– 233,858,800 cells
– 168 angles (1 moment)
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– 168 angles (1 moment)
– 1 spatial unknown per cell



Results

Solvers Blocks Sets Domains Solver Time 
(min)

PI + MG GS (2‐grid preconditioning) 17,424 1 17,424 11.00
PI + MG Krylov 10,200 2 20,400 3.03
Arnoldi + MG Krylov 10,200 2 20,400 2.05

Total unknowns = 78,576,556,800
Number of groups = 2
keff tolerance = 1.0e-3

• Arnoldi performs best  but is even more efficient at tighter convergence• Arnoldi performs best, but is even more efficient at tighter convergence
• 27 v 127 iterations for eigenvector convergence of 0.001

• The GS solver cannot use more computational resource for a problem 
of this spatial sizeof this spatial size
• Simply using more spatial partitions will not result in more efficiency
• Problem cannot effectively use more cores to run a higher fidelity problem 

in energy
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in energy



Parallel Scaling

17,424 cores is effectively the 
maximum that can be used by 
KBA alone

1,728,684,249,600 unknowns (44 groups)

M ltil l l  ll  k li  

78,576,556,800 unknowns (2 groups) MG Krylov solver partitioned 
across 11 sets 

Multilevel solvers allow weak scaling 
beyond the KBA wavefront limit
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Strong Scaling

Optimized communication 
gave performance boost to 

At 200K cores, the multiset
i ti  d i t  gave performance boost to 

100K core job, 
number of sets = 11

communication dominates, 
number of sets = 22

• Communication improvements were significant at 100K core level (using 11 sets).
• They do not appear to scale to 200K core. Why?

• The problem isn’t big enough to demonstrate strong scaling.
• We are not using the optimal block decomposition.
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We are not using the optimal block decomposition.
• Communication collision on torus across full machine.
• Multiset communication latency across entire machine dominates.



Summary

• The next step is to combine efficient preconditioners to 
reduce the number of multigroup and eigenvalue iterationsreduce the number of multigroup and eigenvalue iterations
– Multigrid in energy
– Rayleigh-Quotient iteration

• The combination of 
– Krylov solvers over energy
– Parallel multilevel energy decomposition
– Krylov eigenvalue solvers
Has allowed us to break through the wavefront barrier for eigenvalueHas allowed us to break through the wavefront barrier for eigenvalue
problems and multigroup fixed-source problems with upscattering.
It also enables an extra dimension of parallelism that can be applied 
on GPUs in next gen HPC hardware
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on GPUs in next-gen HPC hardware.



Q ti ?Questions?
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KBA Algorithm sweeping in direction of particle flow

KBA is a direct-inversion algorithm

Start first angle in (-1,+1,-1) octant

Begin next angle in octant

33 Managed by UT-Battelle
for the U.S. Department of Energy Denovo Parallel SN


