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Data-Driven Knowledge Discovery in Climate and Ecosystem Sciences

 Transformation from data-poor to data-rich 
domain

– Sensor Observations: Remote sensors like satellites and– Sensor Observations: Remote sensors like satellites and 
weather radars as well as in-situ sensors and sensor 
networks like weather station and radiation measurements  

– Model Simulations: IPCC climate or earth system models 
as well as regional models of climate and hydrology, along g y gy, g
with observed data based model reconstructions

 Data guided discovery can complement 
hypothesis guided data analysis to develophypothesis guided data analysis to develop 
predictive insights for use by climate scientists, 
policy makers and community at large.

"The world of science has changed ... data-intensive 
science [is] so different that it is worth 
distinguishing [it] … as a new, fourth paradigm 
for scientific exploration." - Jim Gray
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Challenges in Mining Climate and Ecosytem Data

 Spatio-temporal nature of data
– spatial and temporal autocorrelation.
– Multi-scale/Multi-resolution nature

 Scalability
– Size of Earth Science data sets can be very large, 

For example, for each time instance,
2.5°x 2.5°:10K locations for the globe 
250m x 250m: ~10 billion
50m x 50m : ~250 billion

Hi h di i lit High-dimensionality

 Noise and missing values

 Long-range spatial dependence
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 Long memory temporal processes

 Nonlinear processes, Non-Stationarity
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© Vipin Kumar SciDAC July-2010 2

 Fusing multiple sources of data



Challenges in Analyzing Eco-Climate Data

Global Sea Surface Temperature
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Challenges in Analyzing Eco-Climate Data
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Challenges due to data characteristicsChallenges due to data characteristics

• Spatiotemporal, non-stationary, non-i.i.d.

• Massive data sets
2.5°x 2.5°:10K locations for the globe 
250m x 250m: ~10 billion250m x 250m: 10 billion
50m x 50m : ~250 billion

• Long range spatial dependencies 

• Long memory temporal dependencies

• Nonlinear multiscale dependenciesNonlinear multiscale dependencies
• Low frequency variability
• …
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Illustrative Applications of Data Mining

 Monitoring of global forest cover

 Discovering teleconnections among climate 
variables

 Predicting the impacts of climate change Predicting the impacts of climate change
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Monitoring Forest Cover Change: Motivation

 Changes in forests account for over 20%
of the greenhouse gas emissions

– 2nd only to fossil fuel emissions

 Terrestrial carbon can provide up to 25%
of the climate change solution

 Ability to monitor changes in global forest 
cover over space and time is critical for 

bli i l i f f t i benabling inclusion of forests in carbon 
trading

Th d f l bl t h l i l

Deforestation moves large amounts of carbon 
into the atmosphere in the form of CO2.

The need for a scalable technological 
solution to assess the state of forest 
ecosystems and how they are changing 
has become increasingly urgent.

Good to Go Green: SFO Unveils Carbon 
Offset Kiosks
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Monitoring of Global Forest Cover

 Planetary Information System for 
assessment of ecosystem 
disturbances

• Forest fires
• Droughts
• Floods
• Logging/deforestation
• Conversion to agriculture

 This system will help
• quantify the carbon impact of thesequantify the carbon impact of these 

changes
• Understand the relationship to global 

climate variability and human activity

 Provide ubiquitous web-based 
access to changes occurring 
across the globe, creating public 
awareness
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Novel Algorithms for Monitoring Global Eco-system

 State of the art algorithm for land cover change detection do not 
scale

 Alternate Approach:  Use remote sensing  vegetation data

 Existing Time series change detection algorithms do not address 
unique characteristics of eco-system data 

– noise, missing values, outliers, high degree of variability across 
i t ti t d tiregions, vegetation types, and time.

 We have developed new algorithms that build non-parametric 
models of different segments of the time series and use them to 
capture the degree of change

 Data sets used in our study :
• EVI: Enhanced Vegetation Index (250m x 250m)

• FPAR : Fraction of Photosynthetically Active Radiation (1km and 4 km)

S. Boriah, V. Kumar, M. Steinbach, et al., Land cover change detection: a case study, KDD 2008.
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Case Study 1: 

Monitoring Global Forest Cover
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California Fires: 2007 Santa Barbara Fire

 Fire detected is the well 
documented Zaca Fire.  It began g
burning about 15 miles northeast 
of Buellton, California. The fire 
started on July 4, 2007 and by 
August 31, it had burned over g
240,207 acres (972.083 km2), 
making it California's second 
largest fire and Santa Barbara’s 
county largest fire.y g

 The fire was human induced and 
started as a result of sparks from 
a grinding machine on private 
property which was being used toproperty which was being used to 
repair a water pipe. The fire cost 
$118.3 million to fight and 
involved 21 fire crews. 
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Arizona

Two huge forest fires have become one giant 
inferno sweeping across the American state of 
Ari onaArizona. 

http://news.bbc.co.uk/cbbcnews/hi/world/newsid_2
061000/2061402.stm
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Large Outbreak of Fires near Yakutsk, Russia

During the summer months in the Northern 
Hemisphere, many fires are ignited in the boreal 
forests of Canada and Russia by lightning striking 
the surface
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Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team 



Canada: Fires in Yukon Province
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Amazon Rainforest

Brazil Accounts for 
almost 50% of all humid 
tropical forest clearing, 
nearly 4 times that of the 
next highest country, 
which accounts for 
12.8% of the total.
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Amazon Animation

© Vipin Kumar SciDAC July-2010 19



Indonesia

Forest Fires Sweep Indonesia Borneo and Sumatra.
Officials in Indonesia say illegal burning to clear land has caused rampant 
wildfires across Borneo and Sumatra ... eight million hectares have gone up in 
smoke over the last month, and fires are still burning out of control on the island 11 September 2006
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Victoria (Australia)
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Flooding along Ob River, Russia

The river flows north and is blocked by ice (top right), which causes flooding.  Under normal 
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y ( p g ), g
circumstances the river flows into the Gulf of Ob.

Source: NASA Earth Observatory



Web 2.0 interface for planetary information system
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Monitoring Forest Cover Change: Challenges Ahead

 Designing robust change detection algorithms

 Characterization of land cover changes

 Multi-resolution analysis (250m vs 1km vs 4km)
– Different kinds of changes are visible at different scales

 Multivariate analysis Multivariate analysis
– Detecting some types of changes (e.g. crop rotations) 

will require additional variables.

 Data quality improvement
– Preprocessing of data using spatio-temporal noise 

removal and smoothing techniques can increase 
performance of change detection.

 Incremental update and Real-time detectionIncremental update and Real time detection

 Spatial event identification

 Applications in variety of domains:
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 Applications in variety of domains: 
– Climate, agriculture, energy
– Economics, health care, network traffic

24

Source: Merck, 
Google.



Case Study 2: 
Discovering teleconnections: 
Relationship among ocean/atmosphere and the land
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Relationship between El Nino and Fires in Indonesia

El Nino induced drought conditions worsen the forest fires in Indonesia.

The figure shows a positive correlation of El Nino with the number of forest fires 
d t t d i I d idetected in Indonesia
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A Pressure Based El Niño Index: SOI

 The Southern Oscillation 
Index (SOI) is also 
associated with El Niño 0 8
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List of Well Known Climate Indices

Index Description 
 

SOI Southern Oscillation Index: Measures the SLP anomalies between Darwin and Tahiti 
NAO North Atlantic Oscillation: Normalized SLP differences between Ponta Delgada AzoresNAO North Atlantic Oscillation: Normalized SLP differences between Ponta Delgada, Azores 

and Stykkisholmur, Iceland 
AO Arctic Oscillation: Defined as the _first principal component of SLP poleward of 20 N 
PDO Pacific Decadel Oscillation: Derived as the leading principal component of monthly SST 

anomalies in the North Pacific Ocean poleward of 20 Nanomalies in the North Pacific Ocean, poleward of 20 N
QBO Quasi-Biennial Oscillation Index: Measures the regular variation of zonal (i.e. east-west) 

strato-spheric winds above the equator 
CTI Cold Tongue Index: Captures SST variations in the cold tongue region of the equatorial 

Pacific Ocean (6 N-6 S, 180 -90 W)( )
WP Western Pacific: Represents a low-frequency temporal function of the ‘zonal dipole' SLP 

spatial pattern involving the Kamchatka Peninsula, southeastern Asia and far western 
tropical and subtropical North Pacific 

NINO1+2 Sea surface temperature anomalies in the region bounded by 80 W-90 W and 0 -10 S 
NINO3 S f t t li i th i b d d b 90 W 150 W d 5 S 5 NNINO3 Sea surface temperature anomalies in the region bounded by 90 W-150 W and 5 S-5 N
NINO3.4 Sea surface temperature anomalies in the region bounded by 120 W-170 W and 5 S-5 N 
NINO4 Sea surface temperature anomalies in the region bounded by 150 W-160 W and 5 S-5 N 
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Discovery of Climate Indices Using Clustering

 Clustering provides an alternative approach for finding candidate indices.
 Clusters are found using the Shared Nearest Neighbor (SNN) method that 

eliminates “noise” points and tends to find homogeneous regions of “uniform 
density”.

 Clusters are filtered to eliminate those with low impact on land points
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M. Steinbach, P. Tan, V. Kumar, C. Potter and S. Klooster. Discovery of Climate Indices Using 
Clustering, Proceedings of KDD 2003.



Automated Discovery of Climate Indices: Opportunities and Challenges

Opportunities:
 Discover new relationships that are 

difficult to find manually

 Example:
– DMI is a temperature based 

index which is an indicator of 
weak mansoon over Indian

DMI

weak mansoon over Indian 
subcontinent and heavy 
rainfall over east Africa. 

– Clustering finds a pressure 
based surrogate

Phenomenon underlies NAO is 
dynamicCorrelation Between ANOM 1+2 and Land Temp (>0.2)
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climate variables at Multi
scale/Multi-resolution Source:  Portis et al, 

Seasonality of the NAO, AGU 
Chapman Conference, 2000.
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Case Study 3: 

Planning for Climate Change and Extreme Events

Disagreement between IPCC models

 Physics-based Models are Essential but Not Adequate
 Models make relatively reliable predictions at global 

scale for ancillary variables:
f ( )– Sea Surface Temperature (SST)

– Temperature/humidity profiles over land

– Wind spread at different heights

 They provide least reliable predictions for variables They provide least reliable predictions for variables 
that are crucial for impact assessment:

– Regional precipitation and extremes

– Hurricane intensity and frequency

“The sad truth of climate science is that the most crucial 
information is the least reliable”  (Nature, 2010)

Regional hydrology (“P–E” changes in 
2030s) exhibits large variations 

among major IPCC model projections 

– Droughts and floods

Hypothesis-driven “manual” conceptual models try to address this gap:
 Hurricane models (Emanuel et al, BAMS, 2008)

 Regional-scale precipitation extremes (O’Gorman & Schneider, PNAS, 2008; Sugiyama et al, PNAS, 2010)
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We need a systematic approach to semi-automatic data-driven model inference.
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Example: Connection of Tropical Cyclones and Sea Surface Temperature

• There is a strong relationship 
between SST and the number of

August
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tropical cyclones off the western coast of Africa from 1982 to 2007. 
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Correlation between Sea Surface Temperature and the number of tropical cyclones off the western coast of Africa from 1982 to 
2007. 



Predicting Tropical Storm Counts from Climate Model Projections for SST

• Built a regression model that 
relates August SST values off the 
western coast with the August 
tropical storm counts.

• Used predicted SST from climate 
scenarios produced by Global 
Climate Models (GCMs) to ( )
compute projected cyclones.

• Challenges

10 year moving average of predictions based on linear regression, and 
SST from four IPCC climate scenarios. Confidence intervals are based on 
estimate variability, not uncertainty. (Joint work with Ganguly and 
Semazzi).

• How to model non-linear relationships?
• How to incorporate other climate parameters e.g. Wind speed, Vegetation 

over near by land?
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• How to account for multiple hypothesis testing?



Summary

 Data driven discovery methods hold great promise for advancement 
in the mining of climate and eco-system data.

 Scale and nature of the data offer numerous challenges and Scale and nature of the data offer numerous challenges and 
opportunity for the data mining and HPC community.
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