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Supernovae

plural supernovas or supernovae; any of a class of violently
* exploding stars whose luminosity after eruption suddenly
ERB increases millions or even billions of times its hormal level.
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Supernova types
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Core collapse
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As the massive star

nears its end, ittakes
on an onion-layer structure
of chemical elements

iron does not undergo nuclearfusion, so the core
becomes unable to generate heat. The gas pressure
— drops, and overlying material suddenly rushes in

Within a second,

the core collapses
to form a neutron star,
Material rebounds off the
neutron star, settingup a
shock wave

Meutrinos pouring out of the
nascent neutron star propel the
shockwave cutward, unevenly

The shock sweeps
through the entire D:'“‘:"“
star, blowing it apart pihaaal o
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Shock Stall
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Already a panoply of physics to model...
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... and now: a discovery from computation

A standing
accretion shock is
unstable to non-
radial
perturbations: the
Standing
Accretion Shock
Instability (SASI).

The SASI has non-
axisymmetric
modes that are
linearly unstable

4

must be computed

Blondin & Mezzacappa
Nature 445, 58 (2007)

Visualization: K. Ma (UC Dauvis)
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Current Workhorse

Ray-by-ray MGFLD transport (Ee)
3D (magneto)hydrodynamics
150 species nuclear network

Possible Future Workhorse

Ray-by-ray Boltzmann transport (Eec==>)
3D (magneto)hydrodynamics
150-300 species nuclear network

bCHIMERA
The “Exascale Workhorse”

Full 3D Boltzmann transport (E¢c==» (= ¢)
3D (magneto)hydrodynamics

G e h“A \ S i S 150-300 species nuclear network
+AMR
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CHIMERA Architecture

| CHIMERA has 3 “heads” Timestepping
— Hydrodynamics (MVH3) i
— Neutrino Transport (MGFLD-TRANS)
— Nuclear Kinetics (XNET)

| Data transpose for the directionally-
split hydrodynamics accomplished by
ALLTOALL over subcommunicators

| Preponderance of FLOPs are
performed on “local” data
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New developments

"1 Multicore enhancements

— CHIMERA has a lot of unrealized parallelism
I nuclear kinetics
— Jacobian build
— dense linear system solution
| neutrino transport
— Jacobian build
— preconditioning and solving sparse linear system

— At present, we are trying several naive approaches

| threaded libraries
| simple loop-level threading
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Results: 2D Simulations
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0.33975078 0.12320062
T : % ¥ T T T T T T T T

\6X107_

11-Solar-Mass Star
 Shock powered in part by neutrino (radiation) heating from below, aided by

convection.

Shock wave
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* Improved/additional neutrino interactions increase the neutrino heating.

« Shock distorted into cigar shape in part by the shock instability (SASI), which
precipitates shock’s arrival in silicon and oxygen layers (marked by white dashed
line), where nuclear burning can occur behind the shock, further powering it.

* Density ahead of the shock decreases rapidly when it reaches the oxygen layer (less

for the shock to plow through).
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20 Me progenitor
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Confluence of neutrino heating with improved neutrino interactions, convection, the SASI,
nuclear burning, and drop in density lead to an explosion.
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First 3D simulations underway

| CHIMERA-3D currently running on the NCCS XT4
at ORNL

| Maiden voyage stats
— 304 radial zones, 152 zones in 0, 76 zones in ¢
— 20 energy groups up to 404 MeV to resolve neutrino

spectra
— 16 species nuclear network (n,p,14 a nuclei)

— 11552 processors on jaguar
— roughly 4 TB generated so far (10’s of TB for full run)
— set to start similar run on kraken (NICS)
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The future

| A suite of progenitors and weak interaction
physics to be run

— convergence studies are difficult at this scale, but
must be performed

| Larger nuclear network

— providing good isotopic information and a more
reliable energy release

I MHD
| Parallel development of bCHIMERA
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Summary

| Improved neutrino interaction physics +
convection + SASI + nuclear burning +
sufficient simulation time leads to explosions
across a range of stellar progenitor models in
2D simulations.

| The inherently three-dimensional nature of
both convection and the SASI demands
three-dimensional simulations

1 CHIMERA is producing the world’s first 3D,
multiphysics core-collapse supernova
simulations.

| Much to do and many cpu-hours yet to burn...
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