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Radiation Damage CascadesRadiation Damage Cascades

• 14 MeV neutron gives high recoil energy to PKA14 MeV neutron gives high recoil energy to PKA
• Ion collisions create nanoscale region with very 

high temperatureg p
• Recrystallization leaves a handful of defects

– Vacancies coalesce into voids, dislocations entangle , g
causing embrittlement

– This determines mechanical properties
• Defect population affected by cooling rate

– Heat conducted away by electrons
I t t t d t d l t h li– Important to understand electron-phonon coupling



The Ehrenfest methodThe Ehrenfest method

• Classical ions evolving with Newton’s equationsClassical ions evolving with Newton s equations
• Quantum mechanical electrons evolving with 

time-dependent Schrödinger equation.p g q
– Quantum Liouville equation  

– Electrons not kept in ground state.
• Electronic excitation measured by comparison to 

ground state.

• J. le Page, D.R. Mason and W.M.C. Foulkes 2008, J. Phys.: Cond. Matt. 20, 125212
• D.R. Mason et al. 2007, J. Phys.: Cond. Matt. 19, 436209



1keV cascade1keV cascade

13440 atoms, 64 processors, 72h



Simulation challengesSimulation challenges

• Thousands of atoms to contain even a lowThousands of atoms to contain even a low 
energy cascade.

• ps of simulated time for cascade evolutionp
• Delocalised electrons in a metal: ρ is dense
• Atoms move around

^
Atoms move around

• Memory M2N2. Floating ops zM3N2.
– M: orbitals per atom, N: atoms, z: coordination.M: orbitals per atom, N: atoms, z: coordination.

• D. Dundas, E.J. McEniry, D.R. Mason and L. Stella 2007, 
Capability Computing 10 ,12-14



Computational strategyComputational strategy
• H sparse, ρ dense. Both Hermitian

1d ti l d iti

^ ^

• 1d spatial decomposition
– Processor computes a slice of H, f

Upper triangle of ρ stored as blocks

^

^– Upper triangle of ρ stored as blocks 



Excitation as temperature riseExcitation as temperature rise
Electronic occupations

Energy transfer Atoms displaced > 0.1A



Ongoing workOngoing work

• Channelling • Sputteringg p g

1MeV ion loses energy by Impact on surface causes– 1MeV ion loses energy by 
Coulomb interaction

– Impact on surface causes 
ejection of ions
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Equations of motionEquations of motion

• Electronic energyElectronic energy

• Electronic ForceElectronic Force

• Quantum Liouville• Quantum Liouville
equation



Sparse-dense commutatorSparse dense commutator
• A 1-d domain decomposition…

…  means only local message passing
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