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Presentation Plan

I An introduction to Lattice QCD

I Computational challenges – solvers

I MG solvers for QCD systems
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Preliminaries and notation1
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4d space-time becomes discrete lattice

I Gauge potentials, Aµ ∈ su(3), integrated over lattice links

U
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µ
x ∈ SU(3)

I Gamma matrices: γµ ∈ C4×4, µ = 1, 2, 3, 4, {γµ, γν} = δµ,νI and γ5 = γ1γ2γ3γ4 = γ∗5

I ψjs,c : s = 1, 2, 3, 4, c = 1, 2, 3, j = 1, .., nf (nf = 1)

I Covariant finite differences:
e
iagAµ(x+aµ2 )

ψ(x+aµ)−ψ(x)
a ≈ (∂µ + igAµ)ψ(x)

I Plaquette variables: Up = UµxU
ν
x+µU

µ∗
x+νU

ν∗
x

K. Wilson, Confinement of Quarks, Phys. Rev. D10, 2445 (1974)
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Lattice QCD path integral

〈Ω[U ]〉 =
1

Z

Z
Ω[U ] det(M [U ])e−Sg [U ][dU ], [dU ] =

Y
x,µ

dUx,µ

Z =

Z
det(M [U ])e−Sg [U ][dU ]

I O(108)–O(109) degrees of freedom ⇒ use Monte-Carlo 2

I Interpret det(M [U ])e−Sg [U] as a Boltzman weight and use importance sampling to

generate {Uk}: P (Uk) ∝ 1
Z det(M [U ])e−Sg [U]

〈Ω[U ]〉 ≈
1

N

NX
k=1

Ω[Uk]

I Approximating det(M [U ]) (pseudu-fermions):

det(M [U ]) =

Z
e−φ

∗M−1[U ]ψ [dφ∗][dψ] :=

Z
e−Sf (U,φ∗,ψ)[dφ∗][dψ]

M. Clark, The Rational Hybrid Monte Carlo Algorithm, Ph.D., 2005, Univ. of Edinburgh, UKQCD
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Dirac PDE

(γµDµ +m)ψ =
X
µ

X
s

(γµes)⊗ (Dµψs) +m(es ⊗ ψs)

where ψs : R4 7→ C3 and es ∈ C4, s = 1, .., 4

Wilson’s discretization adds a scaled Laplacian term, a∆a:

(Mψ)x =
X
µ

P+
µ ⊗ Uµxψx+µ + P−µ ⊗ U

µ∗
x−aµψx−µ +mqψx,

where P±µ = 1
2a

(I ± γµ) and mq = m+ 4
a

I Breaks chiral symmetry, [γ5,M ] 6= 0
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The Overlap Operator

NM = I +M(M∗M)−1/2

= γ5(γ5 + sign(Q))

= γ5NQ

I Q = γ5M ⇒ Q∗ = Q

I sign(Q) = V sign(Λ)V ∗

I sign(Q) = Q
`
Q2
´−1/2

I Represented by a dense matrix ⇒ cannot be determined explicitly. Instead use a nested
iteration for

(γ5 + sign(Q))ψ = φ

I outer iteration: MVM with NQ

I inner iteration: approximate sign(Q)v in NQv

J. Brannick (PSU) LQCD 10-13-2008 7 / 17



Rational approximation of the Overlap Operator

Idea: Approximate

sign(t) ≈ r(t) =
mX
i=1

ωi
t

t2 + τi
∈ R2m−1,2m

Then

sign(Q)b ≈ r(Q)b =
mX
i=1

ωiQ
`
Q2 + τiI

´−1
b

Known: spec(Q) ⊆ [−b,−a] ∪ [a, b], 0 < a < b

Can solve all these m systems in one stroke
(‘Multishift CG’) since

Km(Q2, b) = Km(Q2 + τiI, b), i = 1, 2, . . . ,m
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On the best approximation

Theorem (Zolotarev)
The (l∞-) best approximation to sign(t) on [−b/a,−1] ∪ [1, b/a] from R2m−1,2m is

r(t) = ts(t2) where s(t) = D

Qm−1
i=1 (t+ c2i)Qm
i=1(t+ c2i−1)

,

where

ci =
sn2

“
iK/(2m);

p
1− (b/a)2

”
1− sn2

“
iK/(2m);

p
1− (b/a)2

” ,
K complete elliptic integral

D determined through

max
t∈[1,(b/a)2]

“
1−
√
ts(t)

”
= − min

t∈[1,(b/a)2]

“
1−
√
ts(t)

”
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Tasks in Lattice Simulations

1 Discretize gauge and fermion actions to preserve symmetries of the continuum
I Least squares formulation – w/ BU & CU

2 Generate gauge configurations according to QCD Lagrangians
I Multi-scale updates based on Compatible Monte Carlo Sweeps – w/

BU, Yale, & UCLA

3 Generate quark propagators for each gauge configuration: Solving Mx = b
I Multi-scale preconditioners – all

4 Write the lattice form of operators which represent observables (e.g., two-point
correlation functions for mass)

5 Calculate those operators (which involve quark propagators) for each configuration,
approximating (M−1)ij , det(M), trace(M−1)

I unbiased multi-scale variance reduction of stochastic trace estimators – w/ BU

6 Analyze data by averaging over various configuration
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Multigrid for QCD circa 2000
R. Ben-Av et al, Fermion simulations using parallel transported multigrid, Phys. Lett.
B253 (1991), pp. 185–192.

R. Ben-Av, M. Harmatz, S. Solomon, and P. G. Lauwers, Parallel transported multigrid for
inverting the dirac operator: Variants of the method and their efficiency, Nucl. Phys.B405
(1993), pp. 623–666.

A. Brandt, Multigrid methods in lattice field computations, Nucl Phys. Proc. Suppl. 26
(1992), pp. 137–180.

R. C. Brower, T. Ivanenko, A. R. Levi, and K. N. Orginos, Chronological inversion method
for the dirac matrix in hybrid monte carlo, Nucl. Phys. B484 (1997), pp. 353–374.

R. C. Brower, E. Myers, C. Rebbi, and K. J. M. Moriarty, The multigrid method for
fermion calculations in quantum chromodynamics, (1993), Print-87-0335, IAS,PRINCETON.

R. C. Brower, K. J. M. Moriarty, C. Rebbi, and E. Vicari, Multigrid propagators in the
presence of disordered u(1) gauge fields, Phys. Rev. D43 (1991), pp. 1974–1977.

R. C. Brower, C. Rebbi, and E. Vicari, Projective multigrid for propagators in lattice gauge
theory, Phys. Rev. Lett. 66 (1991) pp. 1263–1266.

R. C. Brower, et. al., Projective multigrid for Wilson fermions, Nucl. Phys. B366 (1991),
pp. 689–705.

P. Hasenfratz, Prospects for perfect actions, Nucl. Phys. Proc. Suppl. 63 (1998), pp. 53–58.

A. Hulsebos, J. Smit, and J. C. Vink, Multigrid inversion of the staggered fermion matrix
with u(1) and su(2) gauge fields, in Juelich 1991, Proceedings, Fermion algorithms
(QCD161:W573:1991), pp. 161-168.

Many others ...
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Basic MG components

Fewer

First Coarse Grid

Finest Grid

Smooth
The Multigrid
    V−cycle

Restriction

Prolongation

Dofs
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Multigrid for QCD circa 2000 ...
I Gauge field U is not geometrically smooth ⇒ near kernel is locally oscillatory
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I Constant preserving (algebraic) multigrid methods completely fail

I Overall, Lattice QCD and MG have long and painful history, e.g.,

I Parallel Transport MG, Lauwers et al: attempt to define coarse-scale fields consistent
with fine-scale

I Renormilization Group approaches, de Forcrand et al: smooth out the fields within
gauge field equivalence classes (gauge invariance) to generate systems more amenable to
constant preserving MG techniques

I Projective (adaptive) MG, Brower et al: semi-adaptive methods that solve local
eigenvalue problems to characterize near kernel and and define a coarse-scale basis
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Multigrid for QCD circa 2000 ...

Jacobi (Diamond), CG (circle), MG V-cycle (square), W-cycle (star)

R. C. Brower, R. G. Edwards, C. Rebbi, and E. Vicari, Projective multigrid for Wilson
fermions, Nucl. Phys. B366 (1991), pp. 689–705.
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Multi-scale iterative solvers in lattice computations

Solver challenges:

I Systems are nearly singular

I Non-hermitian and positive real or hermitian and maximally indefinite

I Near kernel is unknown: highly oscillatory with oscillations dependent upon fluctuations
in background gauge fields ← heterogeneity of covariant derivatives

I Large near kernel dependent upon on topology

What is needed? A method that can

I Approximate several “arbitrary” kernel components to within desired level of accuracy

I Extract the components from the algebraic problem

I Automatically construct coarse–level basis

J. Brannick (PSU) LQCD 10-13-2008 15 / 17



Multi-scale iterative solvers in lattice computations

Solver challenges:

I Systems are nearly singular

I Non-hermitian and positive real or hermitian and maximally indefinite

I Near kernel is unknown: highly oscillatory with oscillations dependent upon fluctuations
in background gauge fields ← heterogeneity of covariant derivatives

I Large near kernel dependent upon on topology

What is needed? A method that can

I Approximate several “arbitrary” kernel components to within desired level of accuracy

I Extract the components from the algebraic problem

I Automatically construct coarse–level basis

J. Brannick (PSU) LQCD 10-13-2008 15 / 17



Results: 4D Dirac–Wilson system
3

I Adaptive smoothed aggregation MG for M

I M ∈ CN×N , N = 323 · 64 · 12

I β = 5.6, typical configuration
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Number of applications of M (left) and flops (right) needed to reduce relative residual by O(1010)

Adaptive MG Algorithm for Lattice QCD J. Brannick, R. Brower, M. Clark, J. Osborne, and C. Rebbi,
PRL-100(4), 2007, The removal of critical slowing down, —, Lattice 08 Proc.
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Outlook
I Solver development effort yielding optimal methods for M and thus for NM
I Currently focused on optimizing performance in first assembly language implementation

for BG/P

I Implementing MG solver on GPU’s

I Beginning with development of multi-scale methods for HMC and trace calculations
used in disconnected diagram calculaitons

I Long-term: finite element model for QCD Lagrangian

Funding for two postdoc positions and several PhD students (ANL-ALCF: sum. prog., BU:
ECE, Physics, PSU: Math)
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