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Overview 

•  Definition: An inverse problem consists of using the
 results of actual observations to infer the values of the
 parameters characterizing the system under
 investigation.  

Computational Biology 
•  Material property inversion 

Water Distribution Systems 
•  Initial condition inversion 

Identification of Airborne
 Contaminants 

•  Initial condition inversion 

Image Reconstruction 
•  Inverse wave-propagation 

Geologic Properties 
•  Inverse elastic wave propagation 
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Scenario 

•  Class of real-time inversion problems
 that can be formulated as PDE
-constrained optimization problems 
–  Emergency response, hazard assessment,

 structural health monitoring, treaty
 verification, storm forecasting, image
-driven surgery, process control,
 geophysical exploration, etc. 

•  Typical scenario 
–  Greater Los Angeles Basin 
–  Wind from mesoscale models (MM5) 
–  Sparse sensor readings of concentration 
–  Inversion for initial contaminant location 



Managed by UT-Battelle for the 
U. S.  Department of Energy 

•  The Problem: Identify the source of the airborne
 contaminant from sparse sensor measurements 

Motivation 

. . . or more generally 

Identify X from  
sparse observations 

• Why? 
– Localizing the contaminant source helps to contain it and

 mitigate further contamination 
–  Improved predictions helps organize evacuation efforts and

 allocate resources 
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•  The Problem: Identify the source of the airborne
 contaminant from sparse sensor measurements 

•  Some Assumptions: 
–  Contaminant is transported by both convection and

 diffusion 
–  Diffusion coefficient is known 
–  Velocity field (i.e. winds) in convection operator are

 exactly known and static 

Motivation 
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•  Potential “Solution”: Run backwards in time 

•  Numerical Challenge: Problem is ill-posed 
–  The system could be under-determined 
–  Solution depends on discrete measurements 
–  Solution sensitive to changes in measurements 

–  Well-posedness 
•  The problem has a unique solution 
•  Small perturbations in the given data yield nearby results 

Naïve Solution Approach 
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Problem Formulation 

•  The Solution:  Formulate this real-time inversion problem as
 a constrained optimization problem 

 where the decision variables    are inversion parameters. 
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•  Problem: Identify the source of X from sparse
 observations 

•  Numerical Challenge: Optimization problem is also  
ill-posed and requires regularization 
–  Solution basin is flat (i.e. many near-solutions close to the

 minima) 
–  Result:  

•  Good recovery of low frequency components of the solution  
•  But, bad recovery of high frequency components 

Problem Formulation: Source Inversion 
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Constraints are  
convection-diffusion

 transport 

•  Estimate the initial condition      by solving the inverse
 problem 

 given 

  local velocity field 

  diffusion coefficient 

  sensor observations in space and time 

Physical Constraints 
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Computational Challenges 

•  Rapid response is required 
–  Variable fidelity models 
–  Reduced order modeling 

Optimizer 

PDE
 simulation Input Output 

Nested Analysis and Design 

Advantages: 
•  Requires little change to

 forward simulation code 
Disadvantages: 
•  Expensive for large design

 spaces 
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Computational Challenges 

•  Rapid response is required 
–  Variable fidelity models 
–  Reduced order modeling 
–  Fast solution of the optimality conditions via parallelism 

PDE simulation 
Optimizer Input Output 

Simultaneous Analysis and Design 

Advantages: 
•  Better scalability to

 large design spaces 
•  Computationally

 efficient 
Disadvantage: 
•  Expensive in

 development time 
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•  The Lagrangian function, a linear combination of the
 objective function and the constraints, is  

•  The point      is a local minimum of this problem if there
 exists Lagrange multipliers      such that 
–  First-order Karush-Kuhn-Tucker (KKT) conditions are

 satisfied 

–  Second-order KKT conditions are satisfied 

KKT System 

The gradient of the
 Lagrangian function is
 zero 

Positive curvature indicates
 a minimum 
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•  Optimality Conditions: (1st order) 

•  Goal: Solve this system of equations for an initial
 condition     

•  Numerical Challenges: 
–  Size of the parameter set        increases with increasing

 problem resolution  
–  Requires numerous, repeated forward simulations  
–  A boundary-value problem in space-time  

KKT System: Source Inversion 

“State” equation 

“Adjoint” equation 

“Inverse” equation 
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•  Solutions: 
–  Adjoint Method 

•  Allows computation of the gradient of the cost functional at
 the cost of two forward solves, independent of the number of
 parameters 

–  Reduced Space Method 
•  Reduces the boundary-value problem in space and time to

 only space 
–  Matrix-Free Method 

•  Computes the action of the Reduced Hessian, a very large
 linear system, on a vector at the cost of two forward solves 

–  Multigrid Preconditioning and Parallelism 

Computational Challenges 
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•  Optimality Conditions:  (Adjoint Method) 

Numerical Challenges 
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•  In compact notation, 

 this reduces to (Reduced Space Method) 

Numerical Challenges 

Large, but sparse 

Small, but dense 
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•  Goal:  Solve the system 

–  Challenge: Impossible to form Reduced Hessian
 explicitly due to size of the problem 

–  Solution: (Matrix-Free Method) Compute its action on
 a vector (never form it explicitly) 

Numerical Challenges 
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•  Goal:  Solve the system 

–  Challenge: Fast computation of the solution 
•  Standard iterative methods will solve the problem (Conjugate

 Gradient), but still not feasible for predictive capabilities 
–  Solution: Reduced Hessian is well-conditioned for

 positive beta, but we can do better with special-purpose
 Multigrid Preconditioning 

Numerical Challenges 
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•  Discretization/Solver Details 
–  Velocity field pre-computed by laminar Navier-Stokes code 
–  Forward/adjoint transport equation discretized by SUPG/P1 in

 space, Crank-Nicolson in time 
–  Data storage and management avoided 

•  Typically for a non-linear problem, you need the entire state to
 compute the adjoints 

•  States only needed at the  
sensor locations 

–  PETSc library (Argonne) for 
parallel implementation 

Numerical Results 
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•  Surface elevations obtained from USGS GTOPO30 digital elevation
 model at 1 km resolution  

•  Topography-conforming logically-rectangular split-hex-based linear
 tetrahedral mesh  
–  361x121x21 = 917,301 grid points 

•  Gaussian-shaped plume: 

•  Inflow: 

•  Synthetic sensor readings every 3 minutes for 120 minute
 simulation 

•  Run on 64 processors of AlphaCluster at PSC 

Domain Details 
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Numerical Results: Sensitivity to sensors 
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Numerical Results: Sensitivity to
 Regularization 
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Numerical Results: Sensitivity to Sensor
 Noise 

24 
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Inversion example 
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Conclusions 

•  Inversion problems are ill-posed and require special
 numerical techniques for real-time results 
–  Adjoint Methods 
–  Reduced Space Methods 
–  Matrix-Free Methods 
–  Preconditioning and Parallelism 

•  However, exact concentration values may not be necessary
 to invert for the source location 

•  Nonlinear and multi-physics problems require significant
 algorithmic work 
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Remaining Challenges … or Opportunities? 

•  Demonstrated on a simple scalar linear problem 
–  Nonlinear problems (velocity inversion) require complete history

 of forward and adjoint problem 
•  Too big for memory! 
•  Design space is very large! 

•  Multigrid preconditioner was specifically designed for this
 system and discretization 
–  Discontinuous Galerkin methods give us p-adaptivity

 advantages and don’t require SUPG stabilization 
•  Requires new analysis for MG!   
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Questions? 

•  Contact Information 

Judith Hill 

hilljc@ornl.gov 

http://www.csm.ornl.gov/~hilljc 
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•  Consider the heat equation 

Ill-Posedness 

Boundary condition 

Initial condition 
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•  For two different initial condition states 

Ill-Posedness 
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•  The resulting end states are virtually identical  
(non-uniqueness) 

•  Recovering the initial state from this final state is
 impossible due to the ill-posedness of the problem 

Ill-Posedness 
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•  Starting from two nearly identical end states 

Ill-Posedness 
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•  And running reverse in time yields the following initial
 states 

Ill-Posedness 


