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Overview

* Definition: An inverse problem consists of using the
results of actual observations to infer the values of the
parameters characterizing the system under
iInvestigation.

Identification of Airborne

Computational Biology Contaminants
 Material property inversion * Initial condition inversion
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Geologic Properties
* Inverse elastic wave prog

Image Reconstruction
* Inverse wave-propagation
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Scenario

* Class of real-time inversion problems
that can be formulated as PDE
-constrained optimization problems

— Emergency response, hazard assessment,
structural health monitoring, treaty
verification, storm forecasting, image
-driven surgery, process control,
geophysical exploration, etc.

* Typical scenario
— Greater Los Angeles Basin
— Wind from mesoscale models (MM5)
— Sparse sensor readings of concentration
— Inversion for initial contaminant location
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Motivation

 The Problem: Identify the source of the airborne
contaminant from sparse sensor measurements

. .. or more generally

Identify X from
sparse observations

 Why?
— Localizing the contaminant source helps to contain it and
mitigate further contamination

— Improved predictions helps organize evacuation efforts and
allocate resources
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Motivation

 The Problem: Identify the source of the airborne
contaminant from sparse sensor measurements

e Some Assumptions:

— Contaminant is transported by both convection and
diffusion

— Diffusion coefficient is known

— Velocity field (i.e. winds) in convection operator are
exactly known and static
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Naive Solution Approach

 Potential “Solution”: Run backwards in time

Predicted Concentration Predicted Concentration Predicted Concentration
i Time = 120 min Time = 0 min

* Numerical Challenge: Problem is ill-posed
— The system could be under-determined
— Solution depends on discrete measurements
— Solution sensitive to changes in measurements

— Well-posedness
* The problem has a unique solution
* Small perturbations in the given data yield nearby results
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Problem Formulation

* The Solution: Formulate this real-time inversion problem as
a constrained optimization problem

midn J(u,d)

s.t. ¢;(u,d) =0 €&

where the decision variables d are inversion parameters.
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Problem Formulation: Source Inversion

* Problem: Identify the source of X from sparse
observations

1 2 B[ o
um)&gl 5%:/Q/T(u—u*) 6(x —x;) dr dt+§/ﬂuo dx

J

hd

s.t. ¢(u,ug) =0

* Numerical Challenge: Optimization problem is also
ill-posed and requires regularization

— Solution basin is flat (i.e. many near-solutions close to the
minima)

— Result:
* Good recovery of low frequency components of the solution
* But, bad recovery of high frequency components
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Physical Constraints

* Estimate the initial condition ug by solving the inverse
problem

' k2 o é 2
umﬂljg %:/Q/T(u u )40 (x w])da:dt—l—Q/Quoda:

subjectto u; — kAu—+v-Vu=0in Q2 x (0,T)

u=ug In Qx{t=0}
O on [y x(0,7)
u=0 on [px(0,T)

Constraints are
convection-diffusion EVu-n
transport

given
v local velocity field
k diffusion coefficient

uw*sensor observations in space and time
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Computational Challenges

* Rapid response is required
— Variable fidelity models
— Reduced order modeling

Optimizer | Advantages:

* Requires little change to
forward simulation code

Disadvantages:

» Expensive for large design
spaces

Nested Analysis and Design
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Computational Challenges

* Rapid response is required
— Variable fidelity models
— Reduced order modeling

— Fast solution of the optimality conditions via parallelism

Advantages:
._,‘ , ‘ - Better scalability to
large design spaces

« Computationally
efficient

Simultaneous Analysis and Design

Disadvantage:

* Expensive in
development time
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KKT System

* The Lagrangian function, a linear combination of the
objective function and the constraints, is

L(u,\) = T () + Me(w)

* The point u is a local minimum of this problem if there
exists Lagrange multipliers X such that

— First-order Karush-Kuhn-Tucker (KKT) conditions are

satisfied .
VuL(i,\) =0 The gradient of the

c(u) =0 Lagrangian function is
zero

— Second-order KKT conditions are satisfied

’wTVuu L( i, 5\) w> 0 Posij[iv.e curvature indicates
a minimum
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KKT System: Source Inversion

* Optimality Conditions: (15t order)
VulL(u,ug,\) =0  “Adjoint’ equation
VuoL(u,ug,A) =0  “Inverse” equation
c(u,ug) = 0  “State” equation

* Goal: Solve this system of equations for an initial
condition u

* Numerical Challenges:

— Size of the parameter set u increases with increasing
problem resolution

— Requires numerous, repeated forward simulations
— A boundary-value problem in space-time
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Computational Challenges

e Solutions:

— Adjoint Method

* Allows computation of the gradient of the cost functional at
the cost of two forward solves, independent of the number of
parameters

— Reduced Space Method

* Reduces the boundary-value problem in space and time to
only space

— Matrix-Free Method

* Computes the action of the Reduced Hessian, a very large
linear system, on a vector at the cost of two forward solves

— Multigrid Preconditioning and Parallelism
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Numerical Challenges

* Optimality Conditions: (Adjoint Method)

State equation:
u —kAu+v-Vu=0in Q2 x (0,7T)
u=wug In Q2x{t=0}
kVu-n=0 on [y x(0,T)
u=0 on [px(0,T)

Adjoint equation:

At — kAN =V - (V) = =) (u—u*)d(x —x;) in 2 x(0,T)
J
A=0 in Qx{t=1T}

EVAX-n=0 on [y x(0,T)
A=0 on I'px(0,T)

Inverse equation:
—Bug — >‘|t=O =0 in
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Numerical Challenges

* In compact notation,

B'T™B 0 AT [u BT Bu*
0 BR -TY| |ug| = 0 Large, but sparse
A =T 0 A 0

this reduces to (Reduced Space Method)

(TTA"B"BA ' T+8R)ug = —TT A~ BT Bu* Small, but dense

where

A : forward operator
AT adjoint operator
R : regularization operator
B : observation operator
T : extension of Q2 into 2 x (0,T)
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Numerical Challenges

* Goal: Solve the system
(TTA"BT"BA " 'T+B8R)ug = - TT A" B! Bu*

— Challenge: Impossible to form Reduced Hessian
explicitly due to size of the problem

— Solution: (Matrix-Free Method) Compute its action on
a vector (never form it explicitly)
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Numerical Challenges

* Goal: Solve the system

(TTAT"B"BA ' T+8R)ug = -TT" A~ B Bu*

— Challenge: Fast computation of the solution

» Standard iterative methods will solve the problem (Conjugate

Gradient), but still not feasible for predictive capabilities

— Solution: Reduced Hessian is well-conditioned for
positive beta, but we can do better with special-purpose
Muiltigrid Preconditioning

Grid size | CPUs | multigrid preconditioner no preconditioner
wallclock (hrs) iterations | wallclock (hrs) iterations

1294 16 1.05 8 2.13 23

2574 | 128 2.22 6 5.62 23

5134 | 1024 4.89 5 — —
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Numerical Results

* Discretization/Solver Details
— Velocity field pre-computed by laminar Navier-Stokes code

— Forward/adjoint transport equation discretized by SUPG/P1 in
space, Crank-Nicolson in time
— Data storage and management avoided

* Typically for a non-linear problem, you need the entire state to
compute the adjoints

» States only needed at the
sensor locations

— PETSc library (Argonne) for
parallel implementation
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Domain Details

* Surface elevations obtained from USGS GTOPO30 digital elevation
model at 1 km resolution

* Topography-conforming logically-rectangular split-hex-based linear
tetrahedral mesh

— 361x121x21 = 917,301 grid points

Predicted Concentration
Time = () min

e Gaussian-shaped plume:

UO — 206—0.04|x—xc|

0.1 :
° Inflow: . _ ., 2 .
" 5.0 — zgyrface

* Synthetic sensor readings every 3 minutes for 120 minute
simulation

* Run on 64 processors of AlphaCluster at PSC
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Numerical Results: Sensitivity to sensors

Target Concentration 21 x 21 x 21 Sensor Array

Concentration

.20.0

sensor array | ||€]| ’,:e:m"e || e]nctative time iterations
6x6x6 0.793 0.980 2:01:47.11 377
I x 11 x 11 0.495 0.870 2:20:02.65 437
21 x 21 x 21 0.339 0.805 2:33:11.72 484

OAK
FRIDGE

National Laboratory
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Numerical Results: Sensitivity to

Regularization

Target Concentration Profile

Concentration

.20.0

15.0

Ié; llell }jatiw lle ||;'§latique time iterations
1 0.852 0.980 1:10:15.81 212
0.1 0.633 0.940 1:14:00.97 211
0.01 0.495 0.870 2:20:10.29 437
0.001 0.435 0.835 5:24:35.65 1078
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Concentration

.20.0

15.0

Beta = 0.001

Concentration

.m.0

15.0
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Numerical Results: Sensitivity to Sensor
Noise

Target Concentration Profile No white noise

0.000

Noise | |||l zzl“tive llell ::)lati”e time iterations
0 % 0.495 0.870 2:20:10.29 437
5 % 0.497 0.870 2:40:24.02 506
10 % 0.500 0.875 3:01:52.31 581

OAK
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National Laboratory
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Inversion example

Actual Plume P Predicted Plume - P
Time 0 min P Time 0 min T T

.
.~

.
.~

OAK
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Conclusions

* Inversion problems are ill-posed and require special
numerical techniques for real-time results

— Adjoint Methods

— Reduced Space Methods

— Matrix-Free Methods

— Preconditioning and Parallelism

* However, exact concentration values may not be necessary
to invert for the source location

* Nonlinear and multi-physics problems require significant
algorithmic work
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Remaining Challenges ... or Opportunities?

 Demonstrated on a simple scalar linear problem
— Nonlinear problems (velocity inversion) require complete history
of forward and adjoint problem
* Too big for memory!
* Design space is very large!

* Multigrid preconditioner was specifically designed for this
system and discretization

— Discontinuous Galerkin methods give us p-adaptivity
advantages and don’t require SUPG stabilization

* Requires new analysis for MG!
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Questions?

e (Contact Information

Judith Hill
hillic@ornl.gov

http://www.csm.ornl.gov/~hilljc

Managed by UT-Battelle for the
U. S. Department of Energy




Extra Slides

OAK
FRIDGE

National Laboratory

Managed by UT-Battelle for the
U. S. Department of Energy




llI-Posedness

* Consider the heat equation

ou 0%u

0
ot Ox?

w(0,t) = u(1,t)  Boundary condition

u(x,0) = ug(x) Initial condition
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llI-Posedness

* For two different initial condition states

two initial states
12 T T T

OAK
“RIDGE

National Laboratory
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llI-Posedness

* The resulting end states are virtually identical
(non-uniqueness)

state at time 0.01

1k
0.8F —
0.6
04
0.2f

 Recoverir_| . . . state is

impossibl_~_ =~ 7 " 7 " " 7 ' eproblem
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llI-Posedness

e Starting from two nearly identical end states

state at time 0.001

09k exact

0.8 perturbed |

0.7

061

05F

04F

03F

0.2F

0.1F
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llI-Posedness

* And running reverse in time yields the following initial
states

x10°

exact vs. "recovered" initial state
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