Avoiding communication
In linear algebra

Laura Grigori
INRIA Saclay — lle de France,
Universite Paris Sud,
Orsay France

Outline

Motivation

Communication optimal algorithms for dense linear algebra

Extension to sparse linear algebra

Future work

Page 2

Motivation and challenges for communication
avoiding algorithms

e Running time of an algorithm is sum of 3 terms:
e #flops * time_per_flop
e # words moved / bandwidth
e # messages * latency

e Exponentially growing gaps between
e Time_per_flop << 1/Network BW << Network Latency
* Improving 59%/year vs 26%/year vs 15%/year
e Time_per_flop << 1/Memory BW << Memory Latency
* Improving 59%/year vs 23%/year vs 5.5%/year

e Goal : reorganize linear algebra to avoid communication
e Not just hiding communication
e Arbitrary speedups possible
Page 3

Summary — Avoiding Communication in Dense Linear
Algebra

QR or LU decomposition of m x n matrix, m >>n

« Parallel implementation
« Conventional: O(n log p) messages
* “New”: O(log p) messages - optimal

« Serial implementation with fast memory of size F
* Conventional: O(mn/F) moves of data from slow to fast memory

— mn/F = how many times larger matrix is than fast memory

* “New”: O(1) moves of data - optimal

* Lots of speed up possible (measured and modeled)
* Price: some redundant computation, stability?

« Extends to square case, with optimality results
« Extends to other architectures (eg multicore)

Page 4

TSQR: an approach for QR factorization of a tall skinny matrix
using Householder transformations

* QR decomposition of m x n matrix W, m >>n
e TSQR = “Tall Skinny QR”
e P processors, block row layout
e Usual Parallel Algorithm
e Compute Householder vector for each column
e Number of messages o«c n log P
e Communication Avoiding Algorithm
e Reduction operation, with QR as operator
e Number of messages o log P

Wo | = | Roo | Ro;
= — R / \
w 1 10 Ry
W2 — R20 — R11 /
LW] = LRyl —

Page 5

TSQR In more detall

(W, (Qy YRy,
W 0 I Y | R

W, Qa0 Ry
\WB J K Q30 J\ R30)

(ROO \ R

Ry (Q]m (Rm]:czomoz

RZO Qll Rll 11

\ R J

Q Is represented implicitly as a product
(tree of factors)
Page 6

Performance of TSQR vs Sca/LAPACK

e Parallel

e Pentium Il cluster, Dolphin Interconnect, MPICH
 Upto 6.7x speedup (16 procs, 100K x 200)

* BlueGene/L
e Up to 4x speedup (32 procs, 1M x 50)

* Both use EImroth-Gustavson locally — enabled by

TSOR
« Sequential
« OOC on PowerPC laptop

« As little as 2x slowdown vs (predicted) infinite
DRAM

 See UC Berkeley EECS Tech Report 2008-89 and Lapack Working
Note 204 [Demmel, Grigori, Hoemmen, Langoul].

Page 7

Minimizing Communication in TSQR

Wo | = Rowo =Ry, —
Parallel: w=| Wi | 7 Ry Ry
Wy] 7 Ry
W, | - R
Sequential: w-= w, 23 Fo —
W, 3 Ry
| W5 _
Wo | = Roo R
Dual Core: w=| W, Roo — % 7 g,
W, — Ry 3R
L W3 ” R

Multicore / Multisocket / Multirack / Multisite / Out-of-core: ?

Choose reduction tree dynamically Page 8

QR for General Matrices

CAQR — Communication Avoiding QR for general A
* Use TSQR for panel factorizations
* Apply to rest of matrix

Cost of CAQR vs ScalLAPACK’s PDGEQRF
e n x n matrix on PY2 x PY2processor grid, block size b

* Flops: (4/3)n3/P + (3/4)n%b log P/PY2 vs (4/3)n3/P
« Bandwidth: (3/4)n? log P/P*? VS same
« Latency: 25nlogP /b vs 15nlog P

Communication optimal (modulo log P factors)

« Assume: O(n?/P) memory/processor, O(n3) algorithm,

e Choose b optimal, near n/ PY2 (its upper bound)

« Bandwidth lower bound: Q(n? /P¥2) — just log(P) smaller
« Latency lower bound: Q(PY2) — just polylog(P) smaller

» Extension of lrony/Toledo/Tishkin (2004)

Implementation — work in progress Page 9

The LU factorization of a tall skinny matrix

First try the obvious generalization of TSQR.

/Wo /Hoo \(Loo
W = W, _ HlO
W, Hzo
\Ws J o\ Hso /\
I,
U 0 h

Umj
Ull

o
o

N
o

CCHCC

HOZ LOZU 02
—
[T

Page 10

Growth factor for TSLU based factorization

average growth factor {partial pivoting,b=1,24,8,16,32)

10 3 7
C I

7 parallel pivoting

10 ¢

growth factor
o
I

10 10 10 10
matirx size

* Unstable for large P and large matrices.

 When P equals the number of rows, TSLU is equivalent to parallel pivoting.

Courtesy of H. Xiang Page 11

Making TSLU Stable

At each node in tree, TSLU selects b pivot rows from 2b
candidates from its 2 child nodes

At each node, do LU on 2b original rows selected by child
nodes, not U factors from child nodes

When TSLU done, permute b selected rows to top of original
matrix, redo b steps of LU without pivoting

CALU — Communication Avoiding LU for general A
— Use TSLU for panel factorizations

— Apply to rest of matrix

— Cost: redundant panel factorizations

Benefit:

— Stable in practice, but not same pivot choice as GEPP
— b times fewer messages overall - faster

Growth factor for CALU approach

Average growth factor(Wilkinson's definition, randn, 2D layout, New pivoting)

600~
—v—P-256b-32 g
5o0H > P-256b-15 P ,.:i;
—4—-P=128,h=64 e e
Ll -
——-P=128b=32 s i
400 8 -P=-128b=16 P
L
— - P=B4p=128 P
2
P=64h=64 e e
300! P=G4h=32 e
P=64,b=16 7
IIIIIII -
y=n?/3 =
/r’
-
-
-
-
200 o
100 1 |] |
1024 2048 4096 8192

Like threshold pivoting with worst case threshold =.33, so |L| <=3
Testing shows about same residual as GEPP

Page 13

LU for General Matrices

e Costof CALU vs ScalAPACK’s PDGETRF
— n x n matrix on PY2 x PY2processor grid, block size b
— Flops: (2/3)n3/P +(3/2)n%b / PY2 vs (2/3)n3/P+nZb/P1/2
— Bandwidth: n? log P/P1/2 VS same
— Latency: 3nlogP/b vs 1.5n log P+ 3.5n logP/b

e Commnication optimal (modulo log P factors)
— Optimality analysis simpler than for QR

14

Performance vs ScaLAPACK

e TSLU
— IBM Power 5
e Up to 4.37x faster (16 procs, 1M x 150)
— Cray XT4
e Up to 5.52x faster (8 procs, 1M x 150)
* CALU
— IBM Power 5
e Up to 2.29x faster (64 procs, 1000 x 1000)
— Cray XT4
e Up to 1.81x faster (64 procs, 1000 x 1000)

e See INRIA Tech Report 6523 (Grigori, Demmel, Hua, 2008)

15

Other operations

« Communication avoiding in sparse iterative methods (group
of J. Demmel, UC Berkeley):

Take k steps of Krylov subspace method
* GMRES, CG, Lanczos, Arnoldi

* Assume matrix “well-partitioned,” with modest surface-to-volume
ratio

« Parallel implementation
* Conventional: O(k log p) messages
* “New”: O(log p) messages - optimal

e Can incorporate some preconditioners
» Hierarchical, semiseparable matrices ...

Page 16

Preconditioners

ILU(t) for multicore processors - work in progress

Approximate preconditioners that combine ILU(O) with
tangential filtering preconditioners

Tangential filtering allows to effectively damp the error
components in different frequencies.

* Preconditioner M satisfies the property At = Mt

* |LU(O) damps the high frequencies

« Tangential filtering used to damp the low frequencies

Page 17

Conclusions

Possible to minimize communication complexity of much
dense and sparse linear algebra

* Practical speedups

* Approaching theoretical lower bounds

The new algorithms minimize the number of messages
exchanged at the cost of some redundant computation.

Hardware trends mean the time has come to do this
Lots of prior work (see pubs) — and some new

Page 18

Future work

Many open problems

Automatic tuning - choose the right communication
pattern/tree.

Extend optimality proofs to general architectures
Dense eigenvalue problems, rank revealing factorizations.
Sparse direct solvers — CALU or SuperLU?
Which preconditioners work?

Why stop at linear algebra? FMM methods are probably
communication avoiding; another approach is cache
oblivious algorithms.

Page 19

Collaborators

On avoiding communication in linear algebra:
 INRIA: H. Xiang, S. Donfack, A. Gupta

 UC Berkeley: J. Demmel, M. Hoemmen

e CU Denver: J. Langou

On preconditioning (ANR Petal project):
 INRIA, Paris 11- T. Herault

e Paris 6 University - F. Nataf

 |IFP, CEA- R. Masson, T. Guignon, P. Montarnal
 ANL - D. Kaushik

Much related work
— Complete references in technical reports
— Communication optimal project described in preprints available at
www-rocq.inria.fr/Laura.Grigori

Page 20

