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Building Exponential Integrators to Solve
Large Stiff Systems of Differential Equations
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Outline:

> Motivation

» Numerical methods for stiff problems

» Construction and performance of exponential integrators



What Is Stiffness? And Where Do We
Encounter It?

» There are many definitions of stiffness, e.g

Lambert’91: A problem is stiff on a particular interval
If a numerical method Is forced to use an excessively
small step size in relation to the smoothness of the
solution.

» Stiff problems are encountered in many fields, e.g.

.........

Plasma physics

Combustion

A i

Fluid Mechanics




General Nonlinear Problem:

—=f(y) yeR"
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> stiff, stiffness can come from either
linear OR nonlinear part f(y) — Ly + N(y)

AtStubthy << Atﬂccu?"ucy

» no efficient preconditioner is available for implicit
methods



Elementary Example:

2
1D Heat Equation 2% _ ,, 9%
o ot 0z2 [-2 1 07
Discretized In space
dU a=2_ |1
— =AU Ag? | . .. .,
dt : : .1
g ... 1 =2

Explicit scheme

Implicit scheme

Untl = Um + AALU™
Untl = (I + AALU™

Urtt = U + AAwnT
Unt! = (I - AAg)~'U™

But there i1s also exact solution!
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Numerical Difficulties with Stiffness:

Eigenvalues of A place stability restriction on the time step
for the explicit scheme Ay rk z
i =~ oo (5 7))

U™t = (I + AAL)U™

Stability requirement

Explicit scheme

1+ upAt] < 1

Implicit scheme VS. EXxponential integrator

Uﬂ'+1 — (I — AAt)_lUn Both A-stable
but...
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Implicit vs. Exponential schemes:

Since Ais large we need to approximate
(I — AAY)™'b = (I + (AAL) + (AAL)? + (AAL)® +...)b

or

iy o (14 480 (A7 (a2,

Approximation method of choice for large nonsymmetric
matrices iIs Krylov subspace projection

St = span{b, Ab, ..., A" b}

(1.e. to invert the matrix we can use GMRES or FOM)

Convergence of Krylov iteration to estimate f(A)b
depends on ||b||, eigenvalues of A and function f(x)!




Test problem — 2D Brusselator:

du; 2 Us—1 — 2Ug + Ugy
dvy 9 Vi1 — 205+ V1
E = du —uwvita (Am)z , 1=1..,N

Jacobian matrix:
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Krylov iteration convergence comparison:
Tolerance = 1E-5

Problem

GMRES

FOM

size, 2N |(I — AAE)~1p |(I — AAE)~'b|eAAtp |P21(AAL)b| Yaa(AAL)D
200 92 85 35 27 19
400 187 174 70 55 38
800 382 359 140 112 78
Similar result also holds for Jacobian calculated at

different times and for other examples.




Building Exponential Integrators:

d

Ey = f(y) = Ly + N(y)
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Building Exponential Integrators:

ehAo _ | zo+h
@o+h) w0+ ki) + [ e IRy (s))ds
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To construct an exponential method approximate  F2(y(8))
with a polynomial.

This results in a expression for an approximate solution which
Involves functions k—1

1
k() =./n A (:_ 1)!d3

or their linear combinations, e.g.
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Examples of Els — Tokman:

Ry = fly)—Slyn) —An(y —vn)
ki = yn+a@¥1(hdn/3)hf(yn

af0a(2hAn /3)hR(k
Uni1 — yﬂ._l_ 2(hﬂAn)hR 1

¥i(2z) = é1(2)
va(2) = 3¢a(2)
Ys(2) = 3/2(—¢s(z) + 6¢2(2))

Fourth-order scheme EPIRK4 — 3 Krylov projections




Methods Performance Comparison for

Brusselator Example:

Method

Time  Error Time  Error Time  Error
AM?2 /7.81 10.014 |19.72 |0.013 |12.8 |0.013
AMZ2IN |1.93 |0.012 |2.62 [0.013 | 3.49 |0.013
EPI2 0.44 10.011 |0.56 |0.008 | 0.67 |0.085
EPI3 0.56 |0.010 [0.67 |0.0017 | 0.87 |0.001
EPIRK3 |0.59 [0.011 |0.71 {0.0023 | 0.99 |0.0008




More Tests:

2D Brusselator 2D Gray-Scott Equation

=1+ w? — du+ aV3u = —uv? + 0.04(1 — u) + 0.2V2y

uv? = 0.1v + 0.1V3v

QPP

= 3u —uiv + V3w

PP T

2D Allen-Cahn Equation

a"=u—u3+0.1v“u

ot




2D Brusselator:
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2D Gray-Scott Equation:

20 Crig-Seoll edpi-ir wilh ds0. 04, bal) 08, Dusdl.2, Dyal.1. =0
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2D Allen-Cahn Equation:
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Conclusions and Future Work:

» Thorough comparisons of Els and standard integrators
performance on both test problems and real applications

» Construction and analysis of new exponential methods

» Development of publically available serial and parallel
Implementation of Els

Taliven = 0061 (file#1)
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What is stiffness? And where do we

encounter It?
There are many definitions of stiffness, e.g

Lambert’91: A problem is stiff on a particular interval if a
numerical method is forced to use an excessively small
step size in relation to the smoothness of the solution.

Gear’71: Model problem
y'(t) = Aly— F(2)) + F'(2)

Eigenvalues of the Jacobian define stiffness ratio

g _ max | Re;|
~ min|Re)\;|



What is stiffness? And where do we
encounter 1t?

» There are many definitions of stiffness, e.g

Lambert’91: A problem is stiff on a particular interval
If a numerical method Is forced to use an excessively
small step size in relation to the smoothness of the
solution.

» Stiff problems are encountered in many fields, e.g.
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