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Motivation

There is a growing interest in nanoscale structures

higher level of functionality

higher operational speeds

With the decrease of channel dimensions quantum effects become
nonnegligible :

tunneling effects

interference effects

confinements

=⇒ quantum models.
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Motivation

The aim of this work is to describe the transport of charged particles
confined in a nanotransistor.
For devices composed of semiconductors, collisions occurs in the transport.
Incorporating collisions in quantum transport equations is a great
challenge whereas it is well understood for classical transport. Many
approach are considered :

Adding a collision operator in quantum transport equations.

Localizing the region where collisions occurs and use a hydrid
description.

Decoupling the directions with a quantum description in one direction
and classical in others directions.
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Introduction and modeling

Introduction

Quantum transport of electrons is described by the Schrödinger equation :

i∂tψ = −
1

2
∆ψ + (V +Vext)ψ

where ψ(t, x) is the wave function and V the electrosatic potential and
Vext is an external potential.
The particle density is defined by N = |ψ|2.
The selfconsistant potential V is usually computed by solving the Poisson
equation

−∆V = N.
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Introduction and modeling

Introduction

In many devices, electrons might be extremely confined in one or several
directions (for instance at the interface oxyde-semiconductor in
nanotransistors).
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x ∈ ω ⊂ R
2 : transport direction

z ∈ (0, 1) : confining direction

Electrons are transported in the directions x parallel to the gas.

Electrons are confined in the transverse direction z.
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Introduction and modeling

Semiclassical limit

The directions x parallel to the gas are semiclassical. Denoting ε the ratio
between length scales in the transversal and longitudinal directions, after
rescaling, we have :

iε∂tψ
ε = −

ε2

2
∆xψε −

1

2
∂2zzψ

ε +Vψε.

The semiclassical limit is obtained by letting ε going to 0.
Formally it is natural to introduce the subband of the system
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Introduction and modeling

Subband decomposition method

Confinement in the transverse direction z ∈ (0, 1).

Energy is quantified in level ǫk called the subband.

(ǫk[V],χk[V])k≥1 is the complete set of eigenvalues and eigenvectors of
the stationary Schödinger equation :

Subband










−
1

2

d2

dz2
χk + (V + Vc)χk = ǫkχk,

χk[V](0) = χk[V](1) = 0,

∫ 1

0
χkχk′ dz = δk,k′ .

Vc : potential barrier.
V : electrostatic potential.
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Introduction and modeling

Semiclassical limit

Theorem [Ben Abdallah, Méhats ’05]

The Wigner transform Wε(ψε) of the solution of the rescaled Schrödinger
equation converges weakly to

∑
k≥1

fk(t, x, v)χk(t, x, z)χk(t, x, z
′)

where fk is the distribution function and solves the Vlasov equation

∂t fk + v · ∇x fk −∇xǫk · fk = 0.

The charge density converges to

N(t, x, z) = ∑
k≥1

∫

R2
fk dv |χk(t, x, z)|

2.
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Introduction and modeling

Poisson equation

Poisson equation

V(t, x, z) satisfies the Poisson equation

−divx,z(εR∇x,zV(t, x, z)) =
q

ε0
(N(t, x, z) − ND),

where ND is a doping profile,
N is the density of charge carriers,
εR, ε0 are the permittivity.

The density is defined by

N(t, x, z) =
+∞

∑
k=1

∫

R2
fk(t, x)|χk[V](z)|2 dv.
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Introduction and modeling

Models

Schrödinger-Poisson 3D model

↓ semiclassical limit

classical/quantum coupled model :







Vlasov 2D,
Schrödinger 1D,
Poisson 3D.

It justifies the use of classical/quantum coupled models where the coupling
occurs in the momentum variable :

classical in the longitudinal direction x,

quantum in the transversal direction z.
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Introduction and modeling

Hierarchy of models

In semiconductors, collisions govern the motion of particles.
Heuristically we can introduce collisions in the transport direction by
adding a collision operator. At a kinetic level, we obtain then the
Boltzmann equation for semiconductors :

Semiconductor Boltzmann transport equation

∂t fk + (v · ∇x fk −∇xǫk · ∇v fk) = Q( f )k .
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Introduction and modeling

Hierarchy of models

In semiconductors, collisions govern the motion of particles.
Heuristically we can introduce collisions in the transport direction by
adding a collision operator. At a kinetic level, we obtain then the
Boltzmann equation for semiconductors :

Semiconductor Boltzmann transport equation

∂t fk + (v · ∇x fk −∇xǫk · ∇v fk) = Q( f )k .

Collisions drive the charged carriers towards a diffusive regime. In analogy
with the classical case, we use then macroscopic models :

Drift-diffusion coupled to Schrödinger-Poisson (DDSP),

Energy-Transport (ET) coupled to Schrödinger-Poisson,

Spherical Harmonic Expansion (SHE) coupled to
Schrödinger-Poisson.
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Results and on-going works

Existence results

Existence for DDSP

The DDSP system admits a unique weak solution. Moreover, it converges
exponentially fast towards its equilibrium as t → +∞.
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Existence results

Existence for DDSP

The DDSP system admits a unique weak solution. Moreover, it converges
exponentially fast towards its equilibrium as t → +∞.

Diffusive limit

The Boltzmann-Schrödinger-Poisson system admits renormalized solutions
when x lies in a bounded domain of R. Moreover, as the mean free path
goes to 0 its solutions converge towards solutions of the DDSP system.
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Numerical results
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x = (x1, x2) : transport direction
z : confining direction

We will use the stationary quantum-classical coupled system (DDSP) to
obtain a numerical simulation of the transport of charged carriers.

Structure of Si invariant with respect to x2 : x = x1.
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Numerical results

0 0.1 0.2 0.3 0.4 0.5
−200

0

200

400

600

800

1000

1200

V
DS

 (V)

I (
A

/m
)

V
Gate

=0.3 V

V
Gate

=0.4 V

V
Gate

=0.5 V

V
Gate

=0.2 V

V
Gate

=0.1 V

V
Gate

=0 V

−0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
10

0

10
1

10
2

10
3

10
4

V
Gate

 (V)

I (
A

/m
)

Fig.: Left : I-V characteristics for different VGate ; Right : charateristics current -
VGate
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Numerical results

Fig.: Evolution of the density for VDS = 0V (left) and for VDS = 0.2V (right)
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Numerical results

Fig.: Left : surface density for VDS = 0.2V ; Right : Potential energy for
VDS = 0.2V
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On-going works and prospects

Extension of the results for Energy-Transport coupled to
Schrödinger-Poisson : temperature of the system is not constant.

Rigorous derivation of the models : passage from the kinetic to the
macroscopic models.
−→ computation of the constant in the diffusion matrix.

Obtention of the Boltzmann-Schrödinger-Poisson model from the
Schrödinger-Poisson 3D model.
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