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Introduction
We are interested in modeling cancer growth.

Tumors appear after an alteration of a cell's genetic 
material.

Cancer cells have the ability to produce growth signals 
and are less responsive to anti-growth signals. They could 
even escape from death processes.

Main collaborators:

INRIA EPI MC2: T. Colin, A. Iollo, JB Lagaert, D. Lombardi, 
Y. Mammeri, C. Poignard.

INRIA NumMed: D. Bresch, E. Grenier, B. Ribba.

Institut Bergonié: J. Palussière.

INSERM U577: M.C. Durieu, F. Guillemot.
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Problem 1: deriving adequate models
We would like to derive mathematical models adequate to 
describe tumoral growth:

Models should behave according to our knowledge of 
biology.

They should be easily/efficiently discretized.

Ultimately, we want quantitative results to make predictions.

We choose to consider continuous models based on PDEs 
because:

they are not so computationally expensive (when compared 
to discrete models).

they can render a lot of biological phenomena and in 
particular the mechanical effects (interaction between cells is 
a weak part of discrete models like models based on cellular 
automata).
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Basis of continuous models based on PDEs
Each species (nutrient, cellular types...) is described 
by its density depending on time and space 
variables e.g. N(t,x).

In order to describe the evolution of the system, one 
has to write an evolution equation on N. 

Classically, we write down that the total mass is 
conserved in every elementary volume, yielding the so-
called mass-balance equation.

We write the conservation of matter between two times 
arbitrary close.
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Evolution equations on densities
One gets

where J is the total flux of cells i.e. the density of cells 
entering/exiting  this elementary volume. 

Two different problems to model:

Description of cellular movement occurring through 
the flux term J. In this talk, we will assume that the flux 
has the form                 , where v is the velocity 
corresponding to the movement due to cellular division.

Description of cellular division and cellular death 
appearing as source terms. 

These problems may be coupled: cellular 
incompressibility prescribes           

∂tN +∇ · J = birth− death,
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Classically, cancer growth is given by a linear, 
exponential or logistic term. For instance:

Where            is the number of cancer cells per unit 
volume. However, it is far from being satisfying as:

Cellular division (mitosis) is not an instantaneous 
process. The set of steps a cell should undergo before 
its division is called the cell cycle. 

If the environment is not favorable, the division 
process can be interrupted. The cell enters a 
quiescent state and may die. Upon the restoration of 
favorable conditions, cells can resume their division.

Accounting for the cell-cycle

∂tN + Mov. = α(Env)N(1−N),
N(t,x)
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Modeling of the cell cycle

For the sake of simplicity, we consider that tumoral  
cells can be found in three phases. Their position in the 
cell cycle is described by the variable a:

Two proliferating phases                    and                     (in 
which cells divide).

One quiescent phase             (in which cells rest) not 
age-structured.

Fig. 2. Principle of the simplified cell cycle considered in this paper. The transition
between phases P1 and P2 is controlled by the boolean function f at the restriction
point.
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threshold, we consider that proliferating cells become quiescent. Therefore, at
each point of the computational domain, we compute the number of cell and
the quantity of oxygen that is available.

In order to describe these tests quantitatively we introduce the following
boolean function

f(t, x, y, z) =






1 if
∫ amax,P1
0 P1(t, x, y, z, a)da + 2

∫ amax,P2
0 P2(t, x, y, z, a)da

+Q(t, x, y, z) < τo and C(t, x, y, z) > τh,

0 otherwise,

(1)
where τo is the cancer overpopulation threshold, τh the hypoxia threshold.
Here C(t, x, y, z) denotes the concentration of oxygen at point (x, y, z) (see
the equation (7) below). The factor 2 before the population of phase P2 comes
from the fact that the cells present in the second part of the cycle will divide
and therefore contribute to the increase of volume.

The evolution of the population of cells in the cycle is described by






∂tP1 +∂aP1 +∇ · (vP1 P1) = 0,

∂tP2 +∂aP2 +∇ · (vP2 P2) = 0,

∂tQ +∇ · (vQ Q) = (1− f)P1(a = amax,P1)−
[

d
dtf

]+
Q(t−),

(2)

where vP1 , vP2 , vQ are the velocities of the three phases P1, P2 and Q re-

spectively, which we shall determine later on. We have denoted by
[

d
dtf

]+
the

positive part of
[

d
dtf

]
. According to the third equation of (2), if the environ-

ment is not favorable, i.e. f = 0, cells in the phase P1 become quiescent and
appear as a source term in the equation driving the evolution of the phase Q.
If the environment is appropriate, i.e. f = 1), these cells enter the phase P2. If
the environment has just turned to be favorable, the quiescent cells reenter a

5

P1(t, a,x) P2(t, a,x)

Q(t,x)

7

Y E S S  2 0 0 8 O l i v i e r  S A U T



Modeling the cell cycle (3)

The progression of the three phases in the cell cycle 
can be translated into the following equations

The boundary conditions are given by

∂tP1 + ∂aP1 + Mov. = 0,
∂tP2 + ∂aP2 + Mov. = 0,

∂tQ + Mov. = (1− f)P1(a = amax,P1)
−

[
d
dtf

]+
Q(t−).






P1(a = 0) = 2P2(a = amax,P2),

P2(a = 0) = f P1(a = amax,P1) +
[

d
dtf

]+
Q(t−).
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How to compute the velocity of movement?
Incompressibility of the cells gives

But we need more in order to compute v.

Several approaches can be used:

Potential flow models: The velocity has the form:                                            
using the condition on the divergence, it can be 
computed.

Stokes models: The velocity satisfies a (Navier-)Stokes 
equation, where F represents the action of an elastic 
membrane surrounding the tumor for instance.

Mechanical models.                                      

v=-K∇P






−∇ · (νD(v)) +∇p = F,

∇ · v =
∑

species (birth− death)
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Viscoelastic modeling of the movement

We consider the various species as components of a 
viscoelastic material. 

The constitutive law for the stress is

One takes

where L is the density of interstitial liquid and S the 
density of sane tissue considered as elastic.

∇ · σ −∇p = −ν∆v

∂tσ + v ·∇σ −∇vtσ − σ∇v + σ
τ = β(τ)

τ D(v)

τ = (1− L) + 1−L
1−S and β(τ) = β0 + τβ∞
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The initial tumor is a spheroid, the oxygen distribution 
is isotropic.  The mechanical stress is lowered in the 
horizontal direction.

This is in agreement with experimental results from 
Harvard U. 

An example on the influence of stress
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Problem 1’: specific models
Each cancer is different. One has to derive a model specific 
for each type considered. 

We are trying to model the growth of gliomas (brain tumors). 

Initially, tumors are not vascularized but as they grow, the 
process of vascularization (angiogenesis) has a great 
influence           We also have to develop models for 
angiogenesis.
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Problem 2: Parameters? Validation?
We need to determine the various parameters involved in 
our models. 

Some of these parameters are obtainable from experimental 
data (e.g. diffusion coefficients)             we need experiments 
(in vitro, in vivo, non treated tumors...).

Others parameters can not be easily determined.  

We use an optimization algorithm to fit parameters with 
temporal series of medical data. This technique (gradient-
based optimization) is very expensive from a 
computational point of view             we need flops.
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Problem 3: Dealing with real data
We want to use our models with realistic setups.

We have to deal with complex geometries.
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Problem 3: Dealing with real data
We need:

to use the information provided by medical images (e.g. 
DICOM files from MRI...)

Segmentation (e.g. to determine gray and white matters 
from MRI). We are using Insight Toolkit (http://www.itk.org) 
but it is not completely satisfying.

to have high order schemes in space (boundaries between 
domains of interest may be sharp, discontinuous 
parameters). We use:

Penalization method: easy to implement but only of order 
1 in space.

Ghost Fluid method (+AMR): order 2 in space, but not 
easy to write for complex equations (Stokes, viscoelastic 
models).
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Problem 4: Fast computations
We need very fast computations to use our models in 3D, in 
real time or for the optimization process. 

Two approaches are followed:

Reduced order modeling (POD methods).

Parallelization of algorithms, domain decomposition.
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Conclusion
Modeling tumoral growth raises several problems:

1. Precise models are needed.

2. They have to be fully parametrized and validated.

3. We have to use realistic setups/data.

4. We need to reduce computation times.

We could use some help :)
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