High performance parallel simulations for N-body problems

Pierre Fortin

LIP6 laboratory
Université Pierre et Marie Curie
France

pierre.fortin@ip6.fr
Young Investigators Symposium,

October 13-15, 2008
Oak Ridge National Laboratory

High performance parallel simulations for N-body problems

1. The Fast Multipole Method (FMM)

2. High performance M2L computation scheme
3. Hybrid MPI-thread parallelization

4. Current work

5. Future work

High performance parallel simulations for N-body problems

The Fast Multipole Method (FMM)

N-body problem

* Pairwise interactions among N bodies
* Potentials

» electrostatic — molecular dynamics
» gravitational — astrophysics

* Also: electromagnetism, fluid dynamics, VLSI
capacitance. ..

* Direct computation between the N(N — 1)
pairs = quadratic complexity

N
qiq;
22 moa

i=1 jA

Astrophysics

* Mutual interaction principle

Fas =—Fson = ZZ |Zq_qJZ
i i|

i=1 j<i

* Obijectives: billions of particles. . .

Molecular dynamics

High performance parallel simulations for N-body problems

The Fast Multipole Method (FMM)

Hierarchical methods for N-body problems

* Hierarchical space decomposition with an octree

* Potential decomposition

¢ = Ppey + Pra since lim &(r)= Ilim <9> =0
r—+o00 r——4oo \ I
» nearfield — direct computation
» far field — approximate computation (with expansions)

High performance parallel simulations for N-body problems

The Fast Multipole Method (FMM)

Fast Multipole Method (FMM)

Multipole and local expansions (based on spherical harmonics)

Error e =
molecular dynamics

astrophysics

Upward pass

computes multipole expansions

—

—

medium precisions: 107° < e < 1077

= (large computation grain)
low precisions: 1072 < ¢ < 1073
= (small computation grain)

highly non uniform distributions

Downward pass

converts multipole expansions
into local expansions

evaluates local expansions

: direct computation between nearest neighboring cells

Total operation count:

High performance parallel simulations for N-body problems

High performance M2L computation scheme
M2L computation scheme

(multipole-to-local): O(P*) operation count

. | M2L 0
» L]
[] L]
M2L classic || block FFT | rotations plane waves
operation count O(P*) O(P?) O(P®) | O(P?) + O(P?)
numerically stable yes no yes yes
memory requirements / bk T ++
classic
High performance parallel simulations for N-body problems

High performance M2L computation scheme with BLAS routines

High performance M2L computation scheme

What are the ?

Basic Linear Algebra Subprograms

Optimized routines for superscalar architecture: floating point unit pipeline,
hierarchical memory / data locality = peak performance

Standardized interface: portability

: BLAS =

M2L operator = matrix-vector product (dense or sparse)
Matrix-matrix products:

higher efficiency,
but recopies with additional cost

With uniform octrees only: special (row) data storage = no recopies!

Uniform area detection for non uniform distributions:
size /' = BLAS efficiency /

High performance parallel simulations for N-body problems

High performance M2L computation scheme

High performance M2L computation scheme with BLAS routines (2)

-3
8
g 4
2
g8
- 5
=)
§ 6
s
g
S 7
%)
=
G}
o
2
@
T 9
12
-10

T
Classic
Block FFT
Rotations
BLAS (row)

* 4+

0.1

1

10

100

Downward pass (log) CPU times (seconds)

100 000 uniform, IBM Power3

1000

Relative L2 (log) error for potential

le-04

1e-06

1e-08

le-10

le-12

le-14

__Plane waves (FMMPART3D)'
* BLAS (single) ---»---
L XK, BLAS (double)---*--- |
e
r ;x"x
X g
¥ X
[*i‘*
%
[*
*
**
. .
10 100 1000

FMM (log) CPU times (seconds)

3M uniform, Linux PC, 2, 6 GHz

* Compared to FFT, rotations or plane waves (in O(P?) or O(P?)):
» faster computations

low or

medium precisions

» no numerical instabilities

» moderate memory requirements

High performance parallel simulations for N-body problems

Hybrid MPI-thread parallelization
Hybrid MPI-thread parallelization

Principle:
* Several (POSIX) computation threads per MPI process on SMP nodes

* Communication overlapping with computation
(each computation thread is a sender)
* Sender-driven communications (adaptive FMM algorithm)

Advantages of hybrid MPI-thread over pure MPI:

08
& o6
2
©
£ 04
02

* Better load balancing between threads
* More use of mutual interaction principle

10

I P=7 MPI-thread

M Cylinder

LN)

X
b

P=3 MPI-thread - -& -

P=3 Pure MPI| ----e---
P=7‘Pure‘MPI M

4816 32 48 64 80 96 112
Cores (IBM p575)

128

1
Eé “ " Plummer MPI-thread =
TN cg027 MPI-thread ---o--
o8k & Plummer Pure MP| —-=— |
: o hcg027 Pure MPI - e
le. BERREC)
e A
& osf Loy e 1
g i o ¢
2 ™ .
E 04 “me ° E‘ - -e b
[Y *
=t
0.2 | =
T L L L L L L
48 16 32 48 64 80 96 112

Astrophysical distributions

Cores (IBM p575)

* Octree data structure shared among threads = memory scalability /

High performance parallel simulations for N-body problems

} = parallel efficiency /

128

Current work
Porting FMM on hardware accelerators

Hardware accelerators (HWA):
GPU cards: GPGPU (General-Purpose computation on GPUs)
Cell Broadband Engine (Cell B.E.)
Clearspeed cards
FPGA...
and also massively multi-core architectures.

Already first implementations on GPU for:
full direct computations (no FMM): Nyland, Harris & Prins (2007),
Hamada & litaka (2007)
one FMM version: Gumerov & Duraiswami (2008)

How to use these new HWAs being ?
algorithmic changes?
how to program?
HMPP
Rapidmind
OpenCL...
for FMM:

far-field computation — advantage of our FMM:
BLAS routines available on HWA (Cell, GPU) —

but near-field computation?

High performance parallel simulations for N-body problems

Current work
Porting FMM on hardware accelerators (2)

Current HWA target: Cell B.E.

* Cell B.E. hybrid architecture

> 9 cores: 1 PPE + 8 SPE
» 230 GFLOPS (single precision)

Porting FMM on the Cell B.E.:

* Near-field computation:

» Multi-buffering techniques for communication overlapping with computation
» Rely on the multi-thread code for conflicts: 1 POSIX thread < 1 SPE thread
» Require SIMD code optimization for SPE code:

e vectorization

o pipelining and instruction reordering

= firstly done by the programmer, then automatically?

* Load balancing improvement:

» dynamic load balancing with master-workers schemes
» to handle massively multi-core architectures and/or different HWAs
» with possible fault-tolerance?

High performance parallel simulations for N-body problems

Future work
Possible future directions

Integration of hardware accelerators in numerical simulations:

* parallel algorithmic,
* portability over different hardware accelerators,
* code optimization...

Applications related to parallel N-body simulations:

* in astrophysics or molecular dynamics (Laplace kernel),
* with different kernels (electromagnetism, hydrodynamics...).

Thank you for your attention!

High performance parallel simulations for N-body problems

	The Fast Multipole Method (FMM)
	High performance M2L computation scheme
	Hybrid MPI-thread parallelization
	Current work
	Future work

