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The Fast Multipole Method (FMM)

N-body problem

⋆ Pairwise interactions among N bodies
⋆ Potentials

◮ electrostatic → molecular dynamics
◮ gravitational → astrophysics

⋆ Also: electromagnetism, fluid dynamics, VLSI
capacitance. . .

⋆ Direct computation between the N(N − 1)
pairs ⇒ quadratic complexity
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⋆ Mutual interaction principle
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⋆ Objectives: billions of particles. . .

Astrophysics

Molecular dynamics
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The Fast Multipole Method (FMM)

Hierarchical methods for N-body problems

⋆ Hierarchical space decomposition with an octree

⋆ Potential decomposition

Φ = Φnear + Φfar since lim
r→+∞

Φ(r) = lim
r→+∞

(q
r

)

= 0

◮ near field → direct computation
◮ far field → approximate computation (with expansions)
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The Fast Multipole Method (FMM)

Fast Multipole Method (FMM)

⋆ Multipole and local expansions (based on spherical harmonics)
⋆ Error ε ⇒ maximum degree P

◮ molecular dynamics → medium precisions: 10−5 ≤ ε ≤ 10−7

⇒ P ≤ 15 (large computation grain)
◮ astrophysics → low precisions: 10−2 ≤ ε ≤ 10−3

⇒ P ≤ 4 (small computation grain)
→֒ highly non uniform distributions

⋆ Far field

Upward pass
◮ computes multipole expansions

Downward pass
◮ converts multipole expansions

into local expansions
◮ evaluates local expansions

⋆ Near field: direct computation between nearest neighboring cells
⋆ Total operation count: O(P4

.N)
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High performance M2L computation scheme

M2L computation scheme

M2L operator (multipole-to-local): O(P4) operation count

M2L

replacements

Current improvements:

M2L classic block FFT rotations plane waves

operation count O(P4) O(P3) O(P3) O(P3) + O(P2)

numerically stable yes no yes yes

memory requirements / +++ + ++
classic
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High performance M2L computation scheme

High performance M2L computation scheme with BLAS routines

What are the BLAS ?
⋆ Basic Linear Algebra Subprograms
⋆ Optimized routines for superscalar architecture: floating point unit pipeline,

hierarchical memory / data locality ⇒ peak performance
⋆ Standardized interface: portability

M2L matrix formulation: BLAS ⇒ O(C.P4) with C ≪ 1

⋆ M2L operator ⇒ matrix-vector product (dense or sparse)
⋆ Matrix-matrix products:

◮ higher efficiency,
◮ but recopies with additional cost

⋆ With uniform octrees only: special (row) data storage ⇒ no recopies!
⋆ Uniform area detection for non uniform distributions:

size 1 ⇒ BLAS efficiency 1
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High performance M2L computation scheme

High performance M2L computation scheme with BLAS routines (2)
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⋆ Compared to FFT, rotations or plane waves (in O(P3) or O(P2)):

low or
medium precisions

⇒

8

<

:

◮ faster computations
◮ no numerical instabilities
◮ moderate memory requirements

P. Fortin High performance parallel simulations for N-body problems 8



Hybrid MPI-thread parallelization

Hybrid MPI-thread parallelization

Principle:
⋆ Several (POSIX) computation threads per MPI process on SMP nodes
⋆ Communication overlapping with computation

(each computation thread is a sender)
⋆ Sender-driven communications (adaptive FMM algorithm)

Advantages of hybrid MPI-thread over pure MPI:
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Astrophysical distributions
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⋆ Better load balancing between threads
⋆ More use of mutual interaction principle

ff

⇒ parallel efficiency 1

⋆ Octree data structure shared among threads ⇒ memory scalability 1
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Current work

Porting FMM on hardware accelerators

⋆ Hardware accelerators (HWA):
◮ GPU cards: GPGPU (General-Purpose computation on GPUs)
◮ Cell Broadband Engine (Cell B.E.)
◮ Clearspeed cards
◮ FPGA. . .
◮ and also massively multi-core architectures.

⋆ Already first implementations on GPU for:
◮ full direct computations (no FMM): Nyland, Harris & Prins (2007),

Hamada & Iitaka (2007)
◮ one FMM version: Gumerov & Duraiswami (2008)

⋆ How to use these new HWAs being generic and efficient?
◮ algorithmic changes?
◮ how to program?

r HMPP
r Rapidmind
r OpenCL. . .

◮ for FMM:
r far-field computation → advantage of our FMM:

BLAS routines available on HWA (Cell, GPU) → direct porting!
r but near-field computation?
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Current work

Porting FMM on hardware accelerators (2)

Current HWA target: Cell B.E.
⋆ Cell B.E. hybrid architecture

◮ 9 cores: 1 PPE + 8 SPE
◮ 230 GFLOPS (single precision)

Porting FMM on the Cell B.E.:
⋆ Near-field computation:

◮ Multi-buffering techniques for communication overlapping with computation
◮ Rely on the multi-thread code for conflicts: 1 POSIX thread ↔ 1 SPE thread
◮ Require SIMD code optimization for SPE code:

r vectorization
r pipelining and instruction reordering

⇒ firstly done by the programmer, then automatically?
⋆ Load balancing improvement:

◮ dynamic load balancing with master-workers schemes
◮ to handle massively multi-core architectures and/or different HWAs
◮ with possible fault-tolerance?
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Future work

Possible future directions

Integration of hardware accelerators in numerical simulations:

⋆ parallel algorithmic,
⋆ portability over different hardware accelerators,
⋆ code optimization...

Applications related to parallel N-body simulations:

⋆ in astrophysics or molecular dynamics (Laplace kernel),
⋆ with different kernels (electromagnetism, hydrodynamics...).

Thank you for your attention!
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