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Nuclear Fuel Assembly

Reactor vessel and internals
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3.6 to 3.8m

Nuclear Fuel Rod
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[0 The fuel pellet undergoes significant
physical changes during burn up

[0 Modeling of pellet deformation requires
B Fine resolution, and 3D discretization

B Coupling multi-physics models at multiple
scales
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Complex MOX Fuel Pellet Behavior Seen In
Historical LMFBR Studies
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Multiple Phenomena

[0 Thermal conductivity
[0 Fission gas formation, behavior and release
[0 Materials dimensional stability
— Restructuring, densification, Dynamic properties:

growth, creep and swelling  Changes with radiation effects,

Defect formation & migrations temperature, and time
Diffusion of species

B Pu and Am redistribution

Mechanical properties

Thermal expansion

Specific heat

Phase diagrams

Fuel-clad gap conductance

Radial power distribution

Fuel-clad chemical interactions
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Fuel Modeling is inherently Multi-scale
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Current State-of-the-Art (NRC Codes)

[J Axi-symmetric models (2D)

[1 Coarse discretization

[0 Heuristic multi-physics models

[0 Fundamental nuclear physics
occurs at the grain size level
(10-20 um) in the fuel pellet
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Simulation & Modeling Motivation

[J Predictive capability

B Reduce fuel development and qualification time by a factor
of 3

B Deliver increasingly accurate simulation capabilities for fuel
life cycle performance assessment

B Address safety concerns during steady state and transients
[0 centerline fuel melting and wastage of cladding

B Address fuel rod behavior in Design Basis Accident
scenarios such as loss-of-coolant, reactivity insertion, etc

[0 TRU fuels
B Extreme temperatures, irradiation rates, damage

B New chemistry, physics, material issues that are not
considered previously
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Motivation for High Performance Computing

1 Multi-physics coupling
B Neutronics, chemistry, fission products transport, heat
transfer, thermo-mechanics, thermal-hydraulics etc.

[0 Modeling of multiple scales in space and time

B From irradiation point defects, chemistry, microstructure
evolution to transport, conductivity and constitutive
properties at macro-scale

B Develop physics-based macroscopic models

[0 Computational efficiency
B Provide comparable turn-around time with new codes
B Design optimization and sensitivities
B Various loading/boundary conditions scenarios
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Outline

[0 High-fidelity, physics-based simulation of nuclear fuel
performance requires models with increased spatial
and temporal resolution

B Computational tools for simulation of macroscopic fuel
rod models (engineering and design)

B Computational tools for developing physics-based models
(first-principles, molecular dynamics, dislocation
dynamics, kinetic Monte Carlo, discrete lattice models)

B Algorithms for coupling multi-physics based models
across length and time scales
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Relevant Computational Simulations

[0 Fuel rod / fuel bundle simulations : - F;‘a
B Engineering and design { ( - /- ﬁl
B Continuum mechanics based finite 4 1\ U
element simulations = (. f] } |
=1 =
0 Fuel pellet simulations IS |
B Macroscopic: Finite elements o%
™
B Micro/Mesoscopic: Phase-field, o
Kinetic Monte Carlo, Discrete ©
dislocation simulations, Discrete o)
lattice models, Molecular dynamics
B First-principles based simulations: v

Density functional theory and others
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Modeling of Fuel Rod
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Code Integration - Multi-physics Model

1

Neutronics

Heat generation and transfer

Thermo-mechanics/hydraulics

Driver (=

Radiation damage

Chemistry

RSN TR

Fission products

[0 Base capability

[0 Depending on the level of coupling one of the modules can
become Driver, e.g. FEM Thermo-mechanics module can host
chemistry data
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Thermo-Mechanical Codes

[l General-purpose system for large-scale analysis
B Thermal, and mechanics

[0 Employs a hierarchical domain decomposition method
(HDDM) to efficiently utilize massively parallel computer

resources

+Partition into non-overlapping sub-domains
+Analyze sub-domains (fine problem)

+Enforce compatibility between sub-domains
(coarse problem)
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FETI-DP/HDDM

Domain Decomposition
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Scaling on Cray-XT4

[d Scaling up to 6000 cores

[0 20% peak efficiency

[0 Solved up to 300M
problem

988

aee -

688 -

Hall clock time [=]

788

588 -

488 -

ADYENTURE r33BH DOF ==

i i i
1808 28008 3088 4888 He88 6088

Hunber of cores

Number of cores

Phani K. Nukala

Oak Ridge National Laboratory nukalapk@ornl.gov

865-574-7472



Modeling of Fuel Pellets
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Modeling Brittle Fracture of Fuel Pellets

[0 Fracture due to thermal
mismatch and high
thermal gradients

[0 Chemistry/Transport/Diffu
sion of fission products

1 Misorientation dependent
low angle grain boundary
fracture strength

[0 Time dependent evolution
of grain structures and
recrystallization
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High-performance computing
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Simulation of Nuclear Fuel Restructuring

Vector
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Courtesy T.J. Bartel, SNL

[0 Simulation of fuel swelling due to fission products
accumulation in fuel matrix
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Exascale Requirements
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Fuel Rod/Bundle Simulation

[0 Solving a 300M problem took 300 seconds on 6000 cores
[0 Simulation involves 50 steps with 10 iterations per step
[0 Total time — 500 x 300 = 150,000 sec — 42 hours

[0 Assuming a constant efficiency of 20%, a 100,000 core
simulation requires approximately

m (6000/100000) x (42 / 0.2) — 12 hours on 500 TF machine
[0 A bundle of 40 rods requires 12 hours on 20 PF machine

[ All this only with thermo-mechanics and no coupling with
other multi-physics models
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Fuel Pellet Simulation

|
[0 Solving a 1B problem took 1000 seconds on 8000 cores

[0 Simulation involves 50 steps with 10 iterations per step

[1 Total time — 500 x 1000 = 500,000 sec — 6 days

[0 Assuming a constant efficiency of 20%, a 200,000 core
simulation requires approximately

®m (8000/200000) x (6 /7 0.2) — 1.2 days on 1 PF machine

0 All this only with thermo-mechanics and no coupling with
other multi-physics models; No coupling of multiple
scales
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Additional Detalls

[0 Assumed perfect scaling with 20% efficiency!

[0 Addition of multi-physics models: chemistry, fission

products transport, and neutronics will deteriorate the
efficiency

[0 Necessity to run various loading/boundary conditions,
and sensitivity studies will require capacity computing
with each simulation running at 1 PF.
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Final Thoughts ...

O

Fuel and cladding behavior is governed by
B Coupled multi-physics phenomena
B Feedback from multiple scales

High-fidelity simulations aiming to resolve these multiple
scales and couple multi-physics models demand capability
computing

Development of physics-based models requires higher
resolution and larger system sizes

Coupling of time scales in these multi-physics models requires
algorithmic advances

Faster turn around times, multiple loading/boundary conditions
scenarios, and sensitivity studies require capacity computing
with each simulation running at a PF.

Phani K. Nukala Oak Ridge National Laboratory nukalapk@ornl.gov

865-574-7472



Algorithmic Challenges: Coupling
Multiple Time Scales in MD Simulations
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MTS Method

MTS Propagator [0 Step 1: ¥ kick
O™ =y o (@f [ o oS Vi = 0% (y")
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Reversible
At least, second-order Yo = D™ y,)
accurate

[ Step 3: ¥~ kick

yn+1 = (D*Slow (y(z))
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Stabilized MTS Method Analysis
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0 MTS exhibits parametric resonance, whereas SMTS is
stable for any time step
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Stabilized MTS Method Analysis
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[0 Collision of eigenvalues leading to instability of MTS is
clearly visible
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Fermi-Pasta-Ulam (FPU) Problem

q 72 d2n—1 f;gn ﬁ
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[0 Different behavior over different time scales
B Time scale o1: almost-harmonic motion of stiff springs
B Time scale ©°: motion of soft nonlinear springs
B Time scale o: energy exchange among the stiff springs
B Time scale oN, N>1: O(»1) deviations in oscillatory energy
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Fermi-Pasta-Ulam (FPU) Problem

1.4 : : : :
B
h=0.00025 =50 "  °
12r | 7|2* 0.55]
N 0.5 1
0.45] 1
0.8r I1 0.4F | |
0.35)
0.6+ :
N M 0.3f
0.4r | i 0.25} |
3
" | 0.2f
0.2 , \\\\\ ]
// 0.15
0y ‘ : : 0.1 ‘ ‘ ‘ ‘ ‘
0 50 100 _ 150 200 250 68 69 70 71 72 73 74
Time Time
y o= (pZi _p2i—1)
Oscillatory energy " V2
1( 5 2,2 (q —( )
_ _ My 2i-1
IJ - ;(ynﬂ +W Xn+j) Xn+j - I\/; I

Phani K. Nukala

Oak Ridge National Laboratory

nukalapk@ornl.gov
865-574-7472




max

(A H)

FPU Problem
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[l Parametric resonance?

B No parametric resonance effects in the Hamiltonian

B Resonance in the oscillatory energy
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Final Thoughts ...

O

Fuel and cladding behavior is governed by
B Coupled multi-physics phenomena
B Feedback from multiple scales

High-fidelity simulations aiming to resolve these multiple
scales and couple multi-physics models demand capability
computing

Development of physics-based models requires higher
resolution and larger system sizes

Coupling of time scales in these multi-physics models requires
algorithmic advances

Faster turn around times, multiple loading/boundary conditions
scenarios, and sensitivity studies require capacity computing
with each simulation running at a PF.
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