
Misuse-Tolerant
Distributed Systems

Mike Fisk

mfisk@lanl.gov
Computing, Telecommunications, and Networking Division

Los Alamos National Laboratory

Assume Malicious Misuse

Community’s focus thus far: External Access Control
• Off-machine access via SSH, Batch Scheduler, SOA, Web Portal, …
• We know how to do strong authentication and end-to-end encryption

– But we can’t trust the endpoint
• Attackers have and will get around “perfect” authentication and

encryption
– Hijacking remote computers, sessions, credentials, etc.

Assume that a bad guy is logged-in to your exascale system.
Are you concerned?

• Most systems are still “soft and chewy on the inside”

Threats
• Corrupt data
• Delete data
• Contend for resources (CPU, bandwidth, storage)
• Copy data

Soft and Chewy

Common vulnerabilities today:
• Storage systems trust compute nodes to provide access

control
– e.g. Unauthenticated NFS

• Privilege escalation vulnerabilities abound
– Hard to defend against root

• Delegated credentials easily stolen and used
• Delegated credentials aren’t limited to specific capabilities

– Users won’t do this, software can

Misuse-Tolerance

Exascale systems will be compromised
• Risk-Management not Risk-Avoidance

The desktop systems that users use to access
Exascale systems will be compromised a lot

Make misuse recoverable
• Limit scope (one account, one job, one system, etc.)
• Have audit logs of what happens
• Detect misuse
• Roll-back changes during period of compromise

Problems Building Trusted Remote Systems

LANL is building trusted thin clients
• Secure co-processor pre-seeded with a secret and an

expected state value (hash)
• Co-processor hashes all security significant code before it is

executed on a system
• Iff cumulative hash matches expected value, co-processor will

use secret to attest to system’s trustworthiness

What’s wrong with this?
• Someone you trust has to seed co-processor
• Security significant is almost everything:

– BIOS, option BIOSes, Boot Loader, Kernel, Kernel modules
– Any code that can access process memory

• Anything with user’s UID, or root UID
• User can’t change anything security significant without invalidating

– Some of our proposed changes reduce the scope of security significance

Misuse-Tolerance
1. Principle of Least Privilege

Isolate user resources from other instances of that user (may not
be the same person on the other end)
• Restrict access by, say, process group, rather than just UID
• Protect process memory and sockets (/proc/*/mem, ptrace(), etc.)

Prevent privilege escalation
• Well-known technologies: virtual machines, sandboxing, process jails,

mandatory access control, capabilities, etc.

Limit power of root
• Restrict root access to process memory
• Restrict on-the-fly kernel module loads

Delegate credentials with minimal capabilities
• For example if a long-running job needs credentials only to write to

one directory on mass storage, that’s all that should be delegated, not
a carte-blanche credential

Misuse-Tolerance
2. Distributed System Interactions

All elements of the distributed system require user and message
authentication at all times
• Storage systems, RPC, message-passing, remote shell, etc.
• Unless the system somehow provides isolation between instances of

users (e.g. within a single-job machine)

Distributed system software should be written in languages that
are less error-prone (e.g. garbage collected, strongly-typed)
• Especially boutique software that is HPC-specific, since it receives

fewer “eyeballs”

Be able to roll-back any changes the user makes
• All file changes should be copy-on-write with easy point-in-time

restore

Detect misuse and respond
• Create audit logs for all use
• Look for anomalous resource use, attempts to hijack credentials or

find services that don’t require credentials

Performance Impacts

Cryptographic authentication for all accesses and all
messages
• Strong end-to-end message authentication needed anyway to

address bit error rates in exascale data transfers
• Cryptographic operations already being added to commodity

processors
• RDMA hardware will need crypto

Poorly implemented middleware/apps will make
system unusable for users

OS changes have negligible overhead

Conclusions

Learn to tolerate misuse, not just to assume you can
avoid it

Careful top-to-bottom engineering can make misuse
much easier to tolerate than it is now

	Misuse-Tolerant�Distributed Systems
	Assume Malicious Misuse
	Soft and Chewy
	Misuse-Tolerance
	Problems Building Trusted Remote Systems
	Misuse-Tolerance�1. Principle of Least Privilege
	Misuse-Tolerance�2. Distributed System Interactions
	Performance Impacts
	Conclusions

