Computational Study of Colossal Magneto-resistive Manganites

G. Alvarez
(ORNL)

Collaborators: H. Aliaga (UTK), E. Dagotto (UTK/ORNL), M. Fahey (ORNL), A. Moreo (UTK/ORNL), T. C. Schulthess (ORNL)
Recording Head

[Diagram showing the components of a recording head: Shield, Writer, Reader. Dimensions: 10 Gb/in², 70 nm length, 0.9 µm width.]
CMR Manganites: Phase Diagrams

Phase Diagram of $\text{La}_{1-x}\text{Ca}_x\text{MnO}_3$

Uehara, Kim and Cheong

OAK RIDGE NATIONAL LABORATORY

U. S. DEPARTMENT OF ENERGY
Model Phase Diagram Calculations

http://arxiv.org/abs/cond-mat/0509418
Understanding the CMR Effect

NO DISORDER

FM Metal Insulator

WITH DISORDER

Region relevant to CMR

FM Metal CE

No Field “Small” Applied Field

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY
Diagonalizing the fermion matrix

- Hamiltonian is *quadratic* in fermion operators (matrix): 4^N dimensional Hilbert space but problem is reduced to solving the “one-particle Hilbert space” (2N states) and filling levels.
- Integration of classical spins with Monte Carlo
- **Complexity:**
 - Previous method: Matrix diagonalization is $O(N^3)$, executed $O(N)$ times in the Monte Carlo integration: $O(N^4)$
 - More efficient diagonalization: truncated polynomial expansion of density of states (Motome and Furukawa): complexity $O(N)$ and it can be parallelized.
Computational Simulation on XT3

Microscopic phenomenological model

DISORDER (~100 procs.)

MONTE CARLO INTEGRATION
(order N complexity)

Polynomial expansion method
for electrons.
(scales up to 16 to 40 procs.)

Most time consuming function:
Sparse matrix-vector multiplication

1st parallelization (trivial or not)
2nd parallelization (non-trivial)

➢ Typical runs of 1600 to 4000 procs. For phase diagrams, etc.
➢ Runs usually take 12 to 20 hours to complete.
Scaling and Reliability of the Polynomial Expansion Method

![Graph showing CPU Time vs. Number of Sites]
Phase Diagram with Disorder on the XT3
Spin-Phonon-Fermion (SPF) Code

- Http: //mri-fre.ornl.gov/spf
- Integration into psimag toolkit in progress (http: //mri-fre.ornl.gov/psimag)
- MPI with two group communicators: one for the inner integration (PEM) and another to parallelize chemical disorder.
- Code profiled so that most time consuming function is the **sparse matrix-vector multiplier** as expected.
- SPF code also allows us to simulate other magnetic materials: e.g. Diluted magnetic semiconductors (have interest in spintronics).
Conclusions

- Get inspiration for future technologies by studying CMR in manganites.
- New $O(N)$ algorithm and scalable implementation on XT3 allows us to solve a realistic model.
- Chemical disorder creates a region in the phase diagram relevant to understand the CMR effect.
The End
Conclusions

- Calculation of phase diagrams with the polynomial expansion (PEM) are now possible using ~1600 procs. on the Cray XT3.
- By including chemical disorder into the model we will be able to test a hypothesis to explain the CMR effect and more generally to study phase separation and inhomogeneities.
- The PEM will be used on the Cray XT3 to study material-specific spin-fermion models with unbiased techniques.
Complex Observables

- Spectral functions and dynamical observables require more moments for the expansion.
- This implies that the inner parallelization scales up to a larger number of procs. (from 50-100 procs).
- Similar trends for the calculation of conductances or resistivities.
- These “complex” observables are calculated in selected regions of the phase diagram.
Interesting region where CMR effect happens!
La$_{1-x}$Ca$_x$MnO$_3$

[Schiffer et al., PRL 75, 3336 (1995)]
Colossal Magneto-resistive manganites

- Certain manganites (Mn oxides) show the so-called CMR effect.
- Applied magnetic fields produce colossal variations of resistivity.
- Theoretical interest in manganites: they are correlated electron systems.
- Possible technological applications in the future.
Main goals remove

➢ Study the magnetic phase diagram of the model.
➢ Include disorder to search for explanations to the CMR effect.
➢ Include even more realistic band structure and build material-specific models.