Monte Carlo methods as a means of scalability

Monte Carlo (MC) methods are a general class of computer algorithms that simulate a probability distribution for a system. A “random walker” generates a Markov chain of states in a phase space by performing a “random walk” stochastically with the use of pseudo-random number sequences.

In practice, a random walker is mapped to a computational thread. This enables Monte Carlo methods to provide a natural way of massive parallelism by increasing the number of random walkers working concurrently. This applies to the two distinct main branches of Monte Carlo approaches: (i) classical MC for the study of finite temperature properties through statistical mechanics; and (ii) quantum Monte Carlo (QMC) as an ab initio method for the study of electronic properties by solving the Schrödinger equation.

In the following, I demonstrate the feasibility of achieving improved strong and weak scaling by new algorithm designs and renovations, with an example in classical MC. I also discuss a few scalability challenges that I envision in future high performance computers.

Replica-exchange Wang-Landau sampling

Wang-Landau (WL) sampling\(^{[3]}\) is a classical Monte Carlo method that simulates the density of states, \(g(E) \), where \(E \) is the total energy of a system. The partition function is given by:

\[
Z(\beta) = \sum_{E} e^{-\beta H(E)} = \int g(E) e^{-\beta E} dE
\]

from which thermodynamic properties can be calculated. WL sampling was originally designed as a serial algorithm:

- Initialize: \(\beta(H_0) = 0, g(E_0) = \frac{1}{E_0} \)

2. Generate a trial configuration, accept with probability:

\[
p(E_{\text{new}} \rightarrow E_{\text{old}}) = \min\{\frac{g(E_{\text{new}})}{g(E_{\text{old}})}, 1\} E_{\text{new}} \rightarrow E_{\text{old}}, \text{ if accepted} \]

\[
E_{\text{new}} \rightarrow E_{\text{old}}, \text{ otherwise}
\]

3. Update \(g(E) \rightarrow g(E) \times f(E), H(E) \rightarrow H(E) + 1 \)

4. Repeat steps 2-3 until the histogram is “flat”: reset \(H(E) = 0, g(E) = \frac{1}{E} \)

To achieve greater fidelity of the Monte Carlo results and to enable the sampling of larger phase spaces, a more efficient and highly scalable parallel scheme, replica-exchange Wang-Landau (REWL)\(^{[2]}\) sampling, is recently developed:

\[
g(E) \rightarrow g(E) \times f(E)
\]

Acceptance probability:

\[
P(\text{X} \rightarrow \text{Y}) = \min\{\frac{g(\text{Y})}{g(\text{X})}, 1\} \frac{g(\text{Y})}{g(\text{X})} E_{\text{Y}} \rightarrow E_{\text{X}}, \text{ if accepted} \]

\[
E_{\text{Y}} \rightarrow E_{\text{X}}, \text{ otherwise}
\]

1. Splitting of entire energy range into smaller, overlapping windows

2. Ordinary Wang-Landau procedure within a window

3. Each walker updates its own density of states and histogram

4. Replica-exchange between neighboring windows at intervals to ensure ergodicity

REWL has demonstrated excellent strong and weak scaling. Superlinear speed-up is observed compared to serial, single walker WL sampling.

References and Acknowledgements

REWL was developed in collaboration with T. Vogel (LANL), T. Wüst (ETH, Switzerland) and D. P. Landau (U. Georgia). REWL-LSMS development was done in collaboration with M. Eisenbach (ORNL). QMC algorithm development is conducted with P.R.C. Kent (ORNL) and E.F. D’Azevedo (ORNL). Research supported by Advanced Scientific Computing Research, U.S. Department of Energy. Computational time uses resources of the Oak Ridge Leadership Computing Facility at the ORNL, supported by the Office of Science of the U.S. Department of Energy under contract No. DE-ACOS-00OR22725.