Outline

- **Purpose**
 - Develop graphical user interface (GUI) for fitting code
 - Run on TeraGrid

- **Graphical user interface**
 - Need for GUI
 - Fitting code
 - XML

- **Putting it all together**
 - Add to Spallation Neutron Source (SNS) portal
 - Create GUI
 - Write configuration file

- **TeraGrid**
 - Explain TeraGrid
 - Show TeraGrid facilities

- **Sequence**

- **Future work**
Purpose

 dévelop a GUI for fitting service

 - Analyze data at SNS
 - Allow scientists to fit data without having to know anything about the code or parallel computing

 Run on TeraGrid from SNS portal

 - Add to simulation tab in portal
 - Use community account
Need for Fitting Service

- Built for use at SNS
 - Accelerator-based neutron source
 - $1.4 billion project
 - Most intense pulsed beams in world
 - Need tools for analysis to make data useful

- Used by scientists to fit experimental data

Spallation Neutron Source (aerial view)
Fitting Code Behind the GUI

- **NL2SOL**
 - “Adaptive non-linear least-square algorithm”
 - Jacobian matrix must be provided
 - Tested by Meili Chen
 - Used to fit fabricated data

- **NL2SNO**
 - Computes approximate Jacobian matrix by forward differences

- **DAKOTA**
 - Design Analysis Kit for Optimization and Terascale Applications
 - Developed by Sandia National Laboratories
 - Contains following algorithms for optimization
 - with gradient- and nongradient-based methods
 - parameter estimation with nonlinear least squares methods
 - uncertainty qualification
 - sensitivity/variance analysis
XML File

- Written detailing components of GUI
- Used Faregate
 - Unix system
 - vi editor
- Given examples of McStas and AmorRed
- Documentation
Code

```xml
<paramgroup name="Job Parameters">
    <parameter id="cpus" required="yes">
        <cliname type="text" prefix="-" separator=" ">
            S|np
        </cliname>
    </parameter>
    <guirep>
        <widget label="Number of CPUs">
            <tooltip>
                Number of processors on which to run job.
            </tooltip>
            <textentrybox default="10" width="8" />
        </widget>
    </guirep>
</paramgroup>
```
Putting it all together

- Added to SNS portal (neutronsrs.us)
- Anyone with access to portal will have access to this tool
- Sudharshan Vazhkudai will write configuration file out of input
- Configuration file read by fitting code
- Show portal
Fitting_Service [driver]
Fitting Service for Neutron Science Experiments.

Support URL: https://flathead.ornl.gov/trac/InstrumentSoftware

Please Verify or Enter All Required Parameters,
Then Press the 'Submit' Button to Perform the Simulation Operation.
(* = Required Fields)

Submit Close Reset to Defaults Clear All Values Save Config As...

Job Parameters Model Parameters Code Parameters

Number of CPUs *: 10
Input Filename *:
Add Selected File
Number of Data Points *: 1000
Number of X-Values Per Data Point *: 1
Model *: (Select Instrument)
Fitting Code *: (Select Code)
Output Filename *:
<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Max</th>
<th>Min</th>
<th>Vary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplitude</td>
<td>2</td>
<td>10</td>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td>Center</td>
<td>2</td>
<td>10</td>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td>Std. Dev.</td>
<td>2</td>
<td>10</td>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td>Field</td>
<td>Value</td>
<td>Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV(1)</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV(covprt)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV(covreq)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV(dtype)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV(mxical)</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV(mxiter)</td>
<td>150</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV(outlev)</td>
<td>1</td>
<td>Gives the maximum number of iterations allowed. Also indirectly limits number of gradient evaluations. If number does not suffice, NL2SOL returns with IV(1) = 10.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV(parprt)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV(prunit)</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV(solprt)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV(statpr)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV(x0prt)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV(inits)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V(tuner1)</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V(afctol)</td>
<td>1e-20</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TeraGrid

“TeraGrid is an open scientific discovery infrastructure combining leadership class resources at eleven partner sites to create an integrated, persistent computational resource.”

- Began in 2001, ORNL in 2003
- Funded by the National Science Foundation
- Community account
TeraGrid Facilities

- San Diego Supercomputer Center
- National Center for Atmospheric Research
- Texas Advanced Computing Center*
- National Center for Supercomputing Applications*
- Louisiana Optical Network Initiative
- University of Chicago/ Argonne National Laboratory
- Purdue University
- Pittsburgh Supercomputing Center
- Indiana University
- Oak Ridge National Laboratory*
- National Institute for Computational Sciences

*sites available for the fitting service
Sequence

Choose a service

Configuration File

Data to portal

Visualize from portal

Run on TeraGrid

Visualize from portal

Managed by UT-Battelle
for the Department of Energy
Future work

- Analyze real data from SNS
- Include more instruments as they come online
- Add more models as they become available
- Use more fitting codes (possibly Bayesian fitting)
- Make improvement to GUI and add more features to software
Acknowledgments

The work was performed at the Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC under Contract No. De-AC05-00OR22725. This work has been authored by a contractor of the U.S. Government, accordingly, the U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes.

George Seweryniak - RAMS sponsor
Vickie Lynch and John Cobb - mentors
Sudharshan Vazhkudai - configuration file
Meili Chen - NL2SOL, NL2SNO, DAKOTA
Jim Kohl - XML software
Neutron Science Portal Development group at SNS
TeraGrid/NSF group
Mark Hagen

http://teragrid.org/about/ - TeraGrid information